21.05.2013

Duell der Quanten

Gegensätzliche Dynamiken an einem neuartigen Übergang zweier quantenmechanischer Ordnungen simuliert.

Forscher haben einen Übergang zwischen zwei quantenmechanischen Ordnungen untersucht, der so noch nie beobachtet werden konnte. Die Quantenphysiker von der Universität Innsbruck nutzen zusammen mit Kollegen von der Complutense-Universität in Madrid dafür ein neues Instrument, das aktuell zu den vielversprechendsten Entwicklungen in der Quantenphysik zählt: einen Quantensimulator. Dieser funktioniert ähnlich wie ein Quantencomputer und kann physikalische Phänomene in Vielteilchensystemen nachbilden, die kein klassischer Rechner simulieren kann.

Abb.: Mit einer Sequenz von Rechenoperationen erzeugen die Physiker zwischen den Teilchen fragile, quantenmechanische Korrelationen über große Distanzen hinweg. (Bild: Ritsch, IQOQI)

Mit wenigen gefangenen Ionen in einer Vakuumkammer können die Wissenschaftler bereits die komplexe Physik quantenmechanischer Phasenübergänge simulieren. Dafür müssen sie die Teilchen sehr exakt kontrollieren und manipulieren können. „Hier haben wir aus vier beziehungsweise fünf Ionen einen programmierbaren Quantensimulator gebaut“, erzählt Philipp Schindler. Eines der Teilchen dient dazu, gezielt Störungen in das System zu bringen. Mit den anderen Ionen wird gerechnet.

„Wir nennen das einen offenen Quantensimulator. Während Störungen sonst möglichst unterbunden werden, weil sie die fragilen Quanteneffekte zerstören, nutzen wir sie hier, um ein quantenmechanisches System zu ordnen“, sagt Schindler. „Im konkreten Fall erzeugen wir auf diese Weise mit einer Sequenz von Rechenoperationen zwischen den Teilchen fragile, quantenmechanische Korrelationen über große Distanzen hinweg.“

In einem weiteren Schritt unterbrechen die Physiker diese Dynamik immer wieder durch weitere, anders geartete Rechenoperationen. „Dadurch wird die ordnende Dynamik zeitweise unterbrochen“, erklärt Theoretiker Sebastian Diehl. „Wir können dann beobachten, wie die beiden Prozesse miteinander konkurrieren und was an diesem Übergang zwischen zwei Ordnungen passiert.“

Das Experiment verlangt enorme Präzision, weshalb es auch notwendig ist, allfällige Rechenfehler sofort zu korrigieren, um die physikalischen Prozesse korrekt simulieren zu können. Da eine umfassende Fehlerkorrektur, wie sie für Quantencomputer entwickelt wird, mit enormen technischen Aufwand verbunden ist, wählten die Innsbrucker Physiker einen anderen, zukunftsweisenden Weg. Sie identifizierten die wichtigsten Fehlerquellen während der Simulation und gingen gezielt gegen solche Fehler vor. „Diese Art der Fehlerreduktion wird sicher Vorbildwirkung für weitere Experimente haben“, ist Schindler überzeugt. „Während die allgemeine Quantenfehlerkorrektur ein langfristiges Ziel bleibt, könnten auf diese Art und Weise sehr viel früher verlässliche Quantensimulationen größerer Systeme erfolgreich durchgeführt werden“, ergänzt Markus Müller.

U. Innsbruck / PH

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen