04.04.2018

Ein Drittel des Sonnenlichts in Strom umwandeln

Mehrfachsolarzelle auf Silizium­basis erreicht Wirkungs­grad von 33,3 Prozent.

Solarzellen aus Silizium dominieren heute den globalen Photo­voltaik­markt mit einem Anteil von etwa neunzig Prozent. Forschung und Industrie arbeiten sich mit neuen techno­lo­gischen Ent­wick­lungs­schritten an die theo­re­tische Wirkungs­grad­grenze des Halb­leiter­materials Silizium heran. Gleich­zeitig gehen sie neue Wege, um eine neue Genera­tion von noch effi­zien­teren Solar­zellen zu ent­wickeln.

Abb.: Mehrfachsolarzelle aus III-V-Halb­leitern und Silizium, die 33,3 Prozent des Sonnen­lichts in Strom wandelt. (Bild: D. Mahler, Fraun­hofer-ISE)

Forscher des Fraunhofer-Instituts für solare Energie­systeme haben gemein­sam mit der Firma EVG eine neue Mehr­fach­solar­zelle ent­wickelt, mit der genau ein Drittel der im Sonnen­licht ent­haltenen Energie in elek­trische Energie gewandelt werden kann. Die hohe Umwand­lungs­effi­zienz der Mehr­fach­solar­zelle auf Silizium­basis erreichten die Forscher durch 0,002 Milli­meter dünne Halb­leiter­schichten aus III-V-Verbin­dungs­halb­leitern, die auf eine Silizium­solar­zelle auf­ge­bracht werden. Das sicht­bare Licht wird effi­zient in einer ersten Solar­zelle aus Gallium-Indium-Phosphid absor­biert, das nahe Infra­rot­licht in Gallium­arsenid und länger­welliges Licht schließ­lich in Silizium. So können die Wirkungs­grade heutiger Silizium­solar­zellen signi­fi­kant gesteigert werden.

Bereits im November 2016 hatten die Forscher des Fraun­hofer-ISE mit ihrem Industrie­partner EVG einen Wirkungs­grad von 30,2 Prozent demon­striert und diesen im März 2017 auf 31,3 Prozent erhöht. Nun konnten sie die Licht­absorp­tion und die Ladungs­trennung im Silizium noch einmal deut­lich ver­bessern und damit den neuen Rekord­wert von 33,3 Prozent erzielen. Die Rekord­zelle mit dem neuen Ansatz gleicht von außen einer her­kömm­lichen Solar­zelle mit zwei Kontakten und kann somit leicht in Photo­voltaik­module inte­griert werden.

Zur Herstellung der Mehrfachsolarzelle übertrugen die Forscher 1,9 Mikro­meter dünne III-V-Halb­leiter­schichten auf Silizium. Die Ver­bin­dung gelang ihnen mittels eines aus der Mikro­elek­tronik bekannten Ver­fahrens, dem direkten Wafer­bonden. Die Ober­flächen wurden in einer Hoch­vakuum­kammer im mit Hilfe eines Ionen­strahls deoxi­diert und anschlie­ßend unter Druck mit­ein­ander ver­presst. Es ent­stand eine Ein­heit, indem die Atome der III-V-Ober­fläche Bindungen mit dem Silizium ein­gehen. Der Solar­zelle sieht man die komplexe innere Struktur nicht an, sie besitzt wie her­kömm­liche Silizium­solar­zellen einen ein­fachen Vorder- und Rück­seiten­kontakt und kann wie diese in PV-Module inte­griert werden.

Die Mehrfachsolarzelle auf Siliziumbasis weist eine Abfolge von über­ein­ander gesta­pelten Teil­zellen aus Gallium-Indium-Phosphid, Gallium-Arsenid und Silizium auf, die intern durch Tunnel­dioden ver­schaltet sind. Die oberste Zelle aus GaInP absor­biert Strahlung zwischen 300 und 670 Nano­metern, die GaAs-Zelle zwischen 500 und 890 Nano­metern und die Si-Zelle zwischen 650 und 1180 Nano­metern. Die III-V-Schichten wurden zunächst auf einem GaAs-Substrat epi­tak­tisch abge­schieden und dann auf eine speziell ange­passte Silizium­solar­zellen­struktur gebondet. Hierbei wurden auf der Vorder- und Rück­seite des Siliziums tunnel­oxid­passi­vierte Kontakte auf­ge­bracht. Anschlie­ßend wurde das GaAs Substrat ent­fernt, ein nano­struk­tu­rierter Rück­seiten­kontakt zur Weg­längen­ver­länge­rung des Lichts auf­ge­bracht sowie ein Vorder­seiten-Kontakt­gitter und eine Anti­reflex­beschich­tung.

Auf dem Weg zu einer industriellen Fertigung der III-V/Si-Mehr­fach­solar­zelle müssen die Kosten der III-V-Epitaxie und der Ver­bin­dungs­techno­logie mit Silizium weiter gesenkt werden. Hier liegen große Heraus­forde­rungen, die die Forscher in zukünf­tigen Ent­wick­lungs­vor­haben im neu ent­stehenden Zentrum für höchst­effi­ziente Solar­zellen lösen wollen. Dort sollen sowohl III-V- als auch Silizium­techno­logien der nächsten Gene­ra­tion ent­wickelt werden. Ziel­setzung ist es, in Zukunft höchst­effi­ziente Solar­module mit mehr als dreißig Prozent Wirkungs­grad zu ermög­lichen.

Fh.-ISE / RK

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Anbieter des Monats

Quantum Design GmbH

Quantum Design GmbH

Forschung lebt von Präzision. Seit über 40 Jahren steht Quantum Design für innovative Messtechnik auf höchstem Niveau – entwickelt in Kalifornien, betreut weltweit. Unsere Systeme sind der Goldstandard in der Materialcharakterisierung und ermöglichen tiefe Einblicke in die magnetischen, thermischen und optischen Eigenschaften von neuen Materialien.

Meist gelesen

Themen