15.03.2021 • VakuumPlasma

Eine Flasche ultrakaltes Plasma, bitte!

Laserkühlung und magnetischer Einfang bringen Fusions- und Sonnenwindforschung voran.

Phy­siker der Rice Uni­ver­sität in Hous­ton, Texas, ha­ben eine Mög­lich­keit ge­fun­den, das käl­teste Plasma der Welt auf mag­neti­sche Fla­schen „zu zie­hen“ – ein tech­no­logi­scher Fort­schritt, der neue Möglich­kei­ten für die Er­for­schung von Fusi­ons­pro­zes­sen, Welt­raum­wet­ter und ast­ro­phy­sika­li­schen Vor­gän­gen er­öff­net. „Um zu ver­ste­hen, wie der Son­nen­wind mit der Erde in­ter­a­giert oder wie man Ener­gie durch Kern­fu­sion ge­win­nen kann, muss man wis­sen, wie sich Plasma im Magnet­feld ver­hält“, er­klärt Tom Kil­lian, Pro­fes­sor für Phy­sik und Ast­ro­no­mie und De­kan der na­tur­wis­sen­schaftli­chen Fa­kul­tät. Sei­nem Team ge­lang es, lasergekühltes Plasma erst­ma­lig für kurze Zeit in ei­nem Magnet­feld ein­zu­schlie­ßen.

Abb.: Doktorand Grant Gorman im Rice Ultracold Atoms and Plasmas Lab. (Bild:...
Abb.: Doktorand Grant Gorman im Rice Ultracold Atoms and Plasmas Lab. (Bild: Jeff Fitlow/Rice University)

„Damit ha­ben wir nun ein kla­res und kontrol­lier­ba­res Testfeld für die Un­ter­su­chung von neut­ra­len Plasmen, wie sie an weitaus komplexe­ren Or­ten – der Sonnenat­mosphäre oder wei­ßen Zwergster­nen – vor­kom­men“, freut sich der Pro­fes­sor für Physik und Ast­ro­no­mie. „Es ist wirk­lich hilf­reich, dass das Plasma so kalt ist und dass wir diese sehr sau­be­ren La­bor­sys­tem ha­ben. Wenn man mit ei­nem ein­fa­chen, klei­nen, gut kontrol­lier­ten und gut ver­stan­de­nen Sys­tem an­fängt, kann man et­was von dem un­ter na­tür­li­chen Ge­ge­ben­hei­ten im­mer vor­hande­nen Durchei­nander ent­fer­nen und das zu ver­ste­hende Phäno­men wirklich iso­lie­ren."

Zur Er­zeu­gung die­ses ult­ra­kal­ten neutra­len Plasmas kühlten die For­scher zu­nächst ein Gas aus Stronti­um­ato­men mit ei­nem La­ser auf drei Mil­li­kel­vin her­un­ter, um dann mit ei­nem Lichtim­puls von je­dem Atom ein Elektron ab­zu­strei­fen. Die­ser Pro­zess gibt nur sehr we­nig Energie an die Elektro­nen und Io­nen ab, hält das Plasma ult­ra­kalt und macht es emp­findlich für re­lativ schwa­che magne­ti­sche Kräfte.

Der Quadru­pol­magnet­aufbau, der zum Ein­fan­gen des Plasmas ver­wendet wurde, ist ein Standard­bau­teil, das vielfach in Auf­bauten zur Be­obach­tung kalter Plasmen eingesetzten wird. Die zum Rand hin flaschen­hals­förmig zu­sammen­laufenden Feld­linien sorgen für die Rück­führung nach außen flie­gender gela­dener Teilchen, sodass man auch von magne­tischen Flaschen zum Einfang des Plasmas spricht. Da das Mag­net­feld je­doch mit dem op­ti­schen Be­obachtun­gssys­tem wechselwirkt, war sein Ein­satz zum Ein­fan­gen der Plas­men kniffe­lig.

Die zur Plas­madi­ag­nos­tik ein­ge­setzte la­ser­in­du­zierte Flu­o­res­zenz ge­stattet die Be­stimmung von Ort und – über Dopp­ler-Ver­schie­bungen – auch Ge­schwin­dig­keit der Io­nen, in­dem die Fre­quenz des La­ser­lichts auf die im Plasma vor­han­de­nen Io­nen so ab­ge­stimmt wird, dass die Photo­nen an den Io­nen ge­streut werden. Um die Re­so­nanzfrequen­zen herum ver­schieben sich al­ler­dings auch die Magnetfel­der, so­dass die­ser Ef­fekt vom ei­gentlich zu be­obachten­den Doppler-Ef­fekt ge­trennt werden muss. Zu­sätzlich än­dern sich die Magnetfel­der im ge­samten Plasma ebenfalls gra­vie­rend.

„Wir müssen also ein auf ziem­lich kompli­zierte Weise im Raum va­riie­ren­des Magnet­feld be­rücksichti­gen, um die Da­ten zu ver­ste­hen und her­aus­zu­fin­den, was im Plasma pas­siert“, so Kil­lian. „Wir ha­ben ein Jahr da­mit ver­bracht, her­aus­zu­fin­den, was wir se­hen, so­bald wir die Da­ten ha­ben.“

Abb.: Laser­induzierte Fluores­zenz einer ultra­kalten Plasma­wolke (gelb...
Abb.: Laser­induzierte Fluores­zenz einer ultra­kalten Plasma­wolke (gelb und gold) im Qua­dru­pol­mag­neten. Das in der Kam­mer­mit­te er­zeug­te ultra­kalte Plasma (links) ex­pan­diert schnell und löst sich nach we­ni­gen Mikro­se­kun­den auf. Mit Hilfe starker Magnet­felder (rosa) kann das Plasma für eine halbe Milli­se­kun­de ge­hal­ten werden. (Bild:T. Killian/Rice University)

Das Er­gebnis kann sich se­hen las­sen: Nachdem das Plasma im feld­freien Zent­rum ei­nes Quadrup­olmag­ne­ten er­zeugt wurde, dehnte es sich schnell aus und be­wegte sich in den Be­reich des stärke­ren Fel­des. Da­bei ver­langsamte sich seine Ausdeh­nung. Gorman und seine Kol­le­gen konnten nicht be­obachten, wie das Plasma schließ­lich aus der Falle ent­kam, aber es ge­lang ihnen, es für min­destens eine halbe Mil­li­se­kunde ein­zu­schlie­ßen. Ohne magneti­schen Ein­schluss würde sich ein sol­ches Plasma in ein paar zehn Mik­ro­se­kunden auf­lö­sen.

„Wenn sich un­ser Plasma über die Feldli­nien ausdehnt und be­ginnt, die Kräfte zu spüren, die es dann ge­fan­gen hal­ten“, sagte Kil­lian, „ist das ein häufi­ges auf­tre­ten­des, sehr kompli­ziertes Phäno­men, das wir wirklich ver­ste­hen müs­sen.“

In der Na­tur tritt es bei­spiels­weise beim Son­nenwind auf. Wenn diese Ströme hoch­ener­ge­ti­schen Plas­mas auf die Erde treffen, in­teragie­ren sie auf noch nicht de­tail­liert ge­klärte Weise mit dem Magnetfeld un­se­res Pla­ne­ten. Auch die Fu­sionse­nergie­for­schung ist auf ein ge­naues Verständnis für die Wechsel­wir­kung zwischen Plasmen und Magnetfel­dern an­ge­wiesen.

„Ei­nes der Hauptprobleme ist es, das Magnetfeld lange ge­nug stabil zu hal­ten, um die Re­ak­tion tat­säch­lich ein­zu­däm­men“, be­schreibt Ast­ro­physi­ker und Co-Au­tor Ste­phen Bradshaw, der sich auf die Un­ter­su­chung von Plas­maphäno­me­nen auf der Sonne spe­zia­li­siert hat. „So­bald es eine kleine Art von Stö­rung im Magnet­feld gibt, wächst es und 'pfft', die Kernre­ak­tion ist rui­niert. Da­mit es gut funkti­o­niert, muss man die Dinge wirklich, wirk­lich stabil hal­ten“, sagte er. „Und auch hier könnte das Be­trach­ten der Dinge in ei­nem wirklich schö­nen, un­be­rührten La­borplasma uns hel­fen, besser zu ver­ste­hen, wie Teil­chen mit dem Feld wechsel­wir­ken.“

In zu­künfti­gen Ar­bei­ten pla­nen die Forscher, Magnet­felder mit La­sern zu kombinie­ren, um noch stabi­lere und viel­sei­ti­gere Fal­len zu schaf­fen.

Rice Universität / LK

Weitere Infos

Weitere Beiträge

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen