Eine Million unbekannte Galaxien aufgespürt
Europäisches LOFAR-Teleskop liefert Daten für eine neue Himmelskarte.
Sieben Jahre lang sammelte ein internationales Forschungsteam Radiosignale aus dem All. Die Daten wurden jetzt in Form einer neuen Himmelskarte veröffentlicht. Sie gewähren einen einzigartigen Blick auf die Wunder unseres Universums. 4,4 Millionen Galaxien wurden erstmals im Radiowellenbereich sichtbar gemacht. Eine Million dieser Galaxien war zuvor vollkommen unbekannt. Möglich wurden die Entdeckungen durch das europäische Lofar-Teleskop, das größte Radioteleskop, das je gebaut wurde. Der Jülicher Höchstleistungsrechner Juwels, der aktuell schnellste Supercomputer in Europa, half dabei, die gigantischen Datensätze zu verarbeiten.
Rund ein Viertel des nördlichen Himmels haben die Forschenden mithilfe von Lofar in bislang unerreichter Auflösung kartiert und der Öffentlichkeit zugänglich gemacht. Die meisten Objekte in der neuen Himmelskarte sind Milliarden Lichtjahre entfernt. In der Regel handelt es sich um Galaxien, die in ihrem Zentrum massereiche schwarze Löcher oder Gebiete sehr starker Sternbildung beherbergen. Seltener sind auch Gruppen von kollidierenden Galaxien darunter oder Objekte aus unserer Milchstraße, wie beispielsweise Sterne mit Strahlungsausbrüchen, die Flare-Sterne, zu sehen. „Die Arbeit an diesem Projekt ist so spannend. Jedes Mal, wenn wir eine Karte erstellen, stoßen wir auf eine Fülle von neuen Entdeckungen und Objekten, die noch nie zuvor ein menschliches Auge gesehen hat“, erklärt Timothy Shimwell von der niederländischen Forschungseinrichtung Astron und der Universität Leiden.
Zu den wichtigsten gegenwärtigen Ergebnissen gehören: Die Entdeckung merkwürdiger Signale von nahen Sternen, die möglicherweise von umkreisenden Exoplaneten verursacht werden. Die genaue Vermessung eines extrem langsam rotierenden Pulsars, die derzeitige Theorien zur Beschreibung solcher Objekte infrage stellt. Die Beobachtung von Quallengalaxien, die auf ihrer Reise durch ein Medium Material verlieren, sowie von weiteren Radiogalaxien in allen Formen, Größen und Altersklassen. Diese sind so zahlreich, dass eigens ein Citizen-Science-Projekt ins Leben gerufen wurde, um in diesem Galaxien-Zoo nach neuen schwarzen Löchern zu fahnden.
Die aktuelle Karte umfasst gerade einmal 27 Prozent der Daten, die das Lofar-Projekt insgesamt erheben wird. Dennoch steckt dahinter ein riesiger Datensatz. Für die Erstellung haben die Forschenden Aufnahmen von 3500 Beobachtungsstunden ausgewertet, die zusammen auf eine Größe von acht Petabyte kommen. Ein großer Teil davon stammt aus dem Lofar-Langzeitarchiv am Jülich Supercomputing Centre. Das Höchstleistungsrechenzentrum am Forschungszentrum Jülich ist eines von drei Datenzentren im Projekt. Es beherbergt etwa ein Drittel des Lofar-Datenarchivs, das insgesamt rund 55 Petabyte umfasst.
„Diese enorme Menge an Daten, die das Lofar-Teleskop generiert, lässt sich nur mit der Hilfe von Hoch- und Höchstleistungscomputern sinnvoll verarbeiten, die in ganz Europa stationiert sind. Eine große Herausforderung ist die Kalibrierung der gemessenen Signale, für die wir unter anderem auf den Jülicher Superrechner Juwels zurückgreifen konnten, der von seiner Rechenkapazität her der Leistung von 300.000 modernen PCs entspricht“, erklärt Matthias Hoeft von der Thüringer Landessternwarte Tautenburg. „Bei dieser wichtigen Aufgabe geht es darum, in einem ersten Schritt störende Einflüsse auf die Signale mittels hochmoderner Algorithmen aus den Messdaten zu bestimmen, gegebenenfalls herauszufiltern und die tatsächliche Helligkeitsverteilung des Himmels für wissenschaftliche Auswertungen zu rekonstruieren.“
Die aufbereiteten Daten stehen Forschenden weltweit zur Verfügung. Für die Zukunft werden zahlreiche weitere bedeutende Erkenntnisse erwartet. „Die Verknüpfung mit Beobachtungen aus anderen Frequenzbereichen kann beispielsweise neue Einblicke in die Eigenschaften der noch unverstandenen dunklen Energie liefern. Und sie ermöglicht neue Einsichten in die Entstehung von Galaxien und noch größeren Strukturen im Universum“, erklärt der Kosmologe Dominik Schwarz von der Universität Bielefeld, der den deutschen Beitrag zu Lofar koordiniert.
Auch Wissenschaftlerinnen und Wissenschaftler der Ruhr-Universität Bochum nutzen die Daten für ihre Arbeit, um die Evolution von Galaxien und Zwerggalaxien mit extrem hohen Sternbildungsraten zu erforschen. „Die völlig neuartige Technik des Lofar-Radioteleskops eröffnet uns viele neue Möglichkeiten, um energiereiche physikalische Prozesse in der Welt der Galaxien zu untersuchen“, sagt RUB-Forscher Ralf-Jürgen Dettmar. Forschungsteams an den Universitäten in Hamburg und Bielefeld sowie an der Sternwarte in Tautenburg untersuchen dagegen gigantische Radioquellen, um den Ursprung von Magnetfeldern im Kosmos zu erforschen. „Eine Erkenntnis, die die Daten bereits jetzt ergeben haben, ist, dass die Magnetfelder im Universum schon recht früh zu ihrer jetzigen Stärke angewachsen sein müssen. Die Erklärung dafür ist, dass chaotische Gasbewegungen die Magnetfelder schnell verstärken in einem Prozess, den man Dynamo nennt“, sagt Marcus Brüggen von der Hamburger Sternwarte.
FZJ / JOL
Weitere Infos
- Originalveröffentlichung
T. W. Shimwell et al.: The LOFAR Two-metre Sky Survey, Astron. & Astrophys. 659, A1 (2022); DOI: 10.1051/0004-6361/202142484 - LOFAR Surveys, University of Hertfordshire
- JUWELS, Jülich Supercomputing Center (JSC), Forschungszentrum Jülich
- Extragalaktische Astrophysik, Hamburger Sternwarte, Universität Hamburg