30.10.2015

Einer für alle!

Einzelner Graphen-Detektor deckt Frequenzbereich von Terahertz-Strahlung bis zu sichtbarem Licht ab.

Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) haben zusammen mit Kollegen aus den USA und Deutschland einen neuen optischen Detektor aus Graphen entwickelt, der extrem schnell auf einfallendes Licht unterschiedlichster Wellenlängen reagiert und schon bei Zimmertemperatur funktioniert. Erstmals kann somit ein einzelner Detektor den Spektral­bereich von sichtbarem Licht über die Infrarot-Strahlung bis hin zur Terahertz-Strahlung überwachen. Die HZDR-Wissenschaftler nutzen den neuen Graphen-Detektor bereits zur exakten Synchronisation von Laser-Systemen.

Abb.: Die äußere Antenne des Detektors fängt langwellige Infrarot- und Terahertz-Strahlung ein und leitet sie zu einer Graphen-Flocke, die sich in der Mitte der Struktur befindet. (Bild: M. Mittendorf)

Eine kleine Flocke Graphen auf Siliziumkarbid und eine futuristisch anmutende Antenne – fertig ist der neue Graphen-Detektor. Diese vergleichsweise simple und auch preiswerte Konstruktion kann erstmals als einzelner Detektor den enorm großen Spektralbereich vom sichtbaren Licht bis zur Terahertz-Strahlung abdecken. „Im Gegensatz zu anderen Halbleitern, wie Silizium oder Galliumarsenid, kann Graphen Licht von sehr unterschiedlicher Photonenenergie aufnehmen und in elektrische Signale umwandeln. Wir mussten hier nur noch mit einer breitbandigen Antenne und dem passenden Substrat die idealen Rahmen­bedingungen schaffen“, erklärt Stephan Winnerl, Physiker am Institut für Ionen­strahl­physik und Material­forschung des HZDR.

Bereits 2013 hatte der damalige HZDR-Doktorand Martin Mittendorff den Vorgänger des Graphen-Detektors entwickelt. Als Postdoc an der University of Maryland hat er ihn nun zusammen mit seinen Dresdner Kollegen sowie Forschern aus Marburg, Regensburg und Darmstadt perfektioniert. Das Funktionsprinzip: Die antennengekoppelte Graphen-Flocke absorbiert die Strahlung, wodurch die Energie der Photonen auf die Elektronen im Graphen übertragen wird. Solche „heißen Elektronen“ erhöhen den elektrischen Widerstand des Detektors und führen so zu schnellen elektrischen Signalen. In nur vierzig Pikosekunden kann der Detektor einfallendes Licht registrieren.

Besonders die Auswahl des Substrats war jetzt ein entscheidender Schritt zur Verbesserung des kleinen Lichtfängers, wie Stephan Winnerl erläutert: „Zuvor verwendete Halbleiter-Substrate haben stets einige Wellenlängen absorbiert, Siliziumkarbid verhält sich hingegen im gesamten Spektralbereich passiv.“ Hinzu kommt eine Antenne, die wie ein Trichter wirkt und langw­ellige Infrarot- und Terahertz-Strahlung einfängt. Die Wissenschaftler konnten so den abgedeckten Spektralbereich im Vergleich zum Vorgänger fast um den Faktor neunzig steigern. Die kürzeste messbare Wellenlänge ist damit tausend Mal kleiner als die längste. Zum Vergleich: Rot, das langwelligste Licht, das das menschliche Auge wahrnehmen kann, hat lediglich die doppelte Wellenlänge von Violett, dem kurzwelligsten sichtbaren Licht.

Am HZDR wird dieser optische Universal­detektor bereits genutzt, um die beiden Freie-Elektronen-Laser am ELBE-Zentrum für Hochleistungs-Strahlen­quellen exakt mit anderen Lasern zu synchronisieren. Besonders wichtig ist diese Justierung für Pump-Probe-Experimente: Dabei regen Forscher ein Material mit einem Laser an und nutzen anschließend einen zweiten Laser mit anderer Wellenlänge zur Messung. Für solche Untersuchungen müssen die Pulse der Laser exakt aufeinander abgestimmt werden. Dafür setzen die Wissenschaftler den Graphen-Detektor wie eine Stoppuhr ein: Er teilt ihnen mit, wann die Laserpulse ins Ziel kommen und durch seine große Bandbreite wird ein Wechsel des Detektors als potentielle Fehlerquelle vermieden. Ein weiterer Vorteil ist, dass alle Messungen bei Zimmer­temperatur ablaufen können und man auf die aufwendige und kostspielige Stickstoff- oder Helium­kühlung anderer Detektoren verzichten kann.

HZDR / DE

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen