Elektrische Signatur von Anti-Skyrmionen
Nachweis der Quasiteilchen über Messung des Hall-Effekts gelungen.
Skyrmionen – mikroskopisch kleine, magnetische Wirbel – könnten die Basis für neue Formen der Datenspeicherung legen. Die Theorie hatte zudem die Existenz Antiskyrmionen vorhergesagt, die schließlich zehn Jahre nach den Skyrmionen entdeckt wurden. Forschende des HZDR, dem MPI CPfS, dem IFW Dresden und der University of South Florida sind nun dem Ursprung dieses komplexen Phänomens mittels Ionenstrahlsäge und ausgeklügelter Messverfahren auf den Grund gegangen.
„Ein Antiskyrmion ist gewissermaßen das Antiteilchen des Skyrmions. Beides sind Quasiteilchen, die ihre Eigenschaften der kollektiven Wechselwirkung einer Vielzahl von Teilchen im Festkörper verdanken und sich stark von den Eigenschaften der zugrundeliegenden Elementarteilchen unterscheiden“, sagt Toni Helm vom Hochfeld-Magnetlabor Dresden (HLD) am HZDR. Helm veranschaulicht das Nebeneinander beider Quasiteilchen in einem Bild: „Die mikroskopisch kleinen Skyrmion-Wirbel bilden sich in einem Meer aus magnetischen Teilchen innerhalb spezieller Materialien aus und benehmen sich merkwürdig. Würde sich ein magnetischer Seefahrer ihnen nähern, würde er entweder angezogen oder abgestoßen werden. Antiskyrmionen wiederum wären für ihn kaum auffindbar, da diese eigentümlichen Anti-Wirbel das unterschiedliche Verhalten der Skyrmionen in sich vereinen.“
Diese Analogie lässt erahnen, dass die Detektion von Antiskyrmionen recht schwierig ist. Doch Helms Team ist einer theoretischen Vorhersage gefolgt, die einen Weg dafür aufzeigt. Aufgrund einzigartiger geometrischer Eigenschaften – ihrer Topologie – verursachen Antiskyrmionen eine zusätzliche Spannung in der elektrischen Leitung des Materials. Das Team hat nun erstmals mittels elektrischer Messmethoden in Kombination mit magnetooptischer Mikroskopie die elektrische Signatur der Antiskyrmionen im untersuchten Material aufgedeckt.
Der charakteristische Fußabdruck der magnetischen Anti-Wirbel ist im Hall-Effekt verborgen. Bei diesem Effekt wird der Strom aufgrund eines äußeren Magnetfeldes, das senkrecht zur Fließrichtung angelegt wird, abgelenkt. Mögliche vorhandene topologische Wirbel erzeugen ein lokales Magnetfeld, das zu einer zusätzlichen Spannung führt. Dieses Signal ist laut Theorie direkt mit der jeweiligen Topologie der Wirbel verwoben. So könnte man durch Messung des Hall-Effekts Skyrmionen von Antiskyrmionen unterscheiden. „Unsere Studie legt nahe, dass dieser Beitrag extrem klein und die gemessene Signatur hauptsächlich auf die magnetischen Eigenschaften der Antiskyrmionen zurückzuführen ist. Mit unseren Ergebnissen helfen wir, die eigentliche Hall-Signatur besser von anderen Effekten zu unterscheiden und geben eine erste Abschätzung ihrer Größenordnung, die frühere Forschungsergebnisse widerlegt“, fasst Helm zusammen.
Helms Team hat sich für die Untersuchungen eine bestimmte magnetische Verbindung aus den Metallen Platin, Mangan und Zinn vorgenommen, die zur Klasse der Heusler-Verbindung zählt. Diese kristallinen Verbindungen zeigen ein anderes Verhalten, als man von ihrer Zusammensetzung her erwarten würde. Sie sind beispielsweise ferromagnetisch, obwohl keines ihrer elementaren Bausteine das für sich allein genommen ist. In der untersuchten Verbindung können sich unter bestimmten Bedingungen verschiedene topologische Strukturen wie Skyrmionen oder Antiskyrmionen ausbilden. Und den Wissenschaftlern ist noch ein weiteres faszinierendes Detail aufgefallen: Die Stärke der Ausprägung der Antiskyrmionen hängt von der Probendicke ab und kann über diese gesteuert werden. „Sie sind in einem massiveren Stück des Ausgangsmaterials nicht feststellbar, treten aber auf, wenn das Material in flache Plättchen mit Dicken unterhalb von zehn Mikrometern geschnitten wird“, erläutert Helm. Dazu verwenden die Physiker eine Art Ionenstrahlkanone, mit der sie die Kristalle des Ausgangsmaterials in feine Teile zersägen.
Bei technologischen Anwendungen spielt die Skalierbarkeit eine entscheidende Rolle. Um etwa zu neuartigen Magnetspeichern und Datenübertragungssystemen zu kommen, die auf solchen Quasiteilchen basieren, sind nanoskalige Bauelemente erforderlich. Weitere Eigenschaften des Materials, die in Zusammenarbeit mit den Kollegen vom HZDR-Ionenstrahlzentrum erforscht wurden, fanden Eingang in die ergänzenden theoretischen Berechnungen und Simulationen. Mit ihnen konnte Helms Team die Existenz von Antiskyrmionen untermauern und zeigen, wie genau sie sich aus einer hochkomplexen magnetischen Umgebung herausbilden können.
Helm sieht Potential für künftige Anwendungen in der Informationstechnologie: „Skyrmionen werden mittlerweile als Kandidaten für Quantenbits oder kurz Qubits gehandelt, die die Datenspeicherung in topologischen Quantencomputern übernehmen sollen. Wenn das funktioniert, würde es auf unsere Antiskyrmionen gleichermaßen zutreffen.“ Aus technologischer Sicht werden Materialien an Bedeutung gewinnen, in denen diese Effekte bei geringeren magnetischen Feldenergien erzeugt werden können. Hier sind gerade die Heusler-Verbindungen interessant, da sie sich mittels gezielter chemischer Verfahren extrem vielfältig modifizieren lassen.
HZDR / JOL