Elektronen aus der Schachtel
Winzige Strahlenquelle nutzt Terahertz-Strahlung statt Hochfrequenzfelder.
Forscher von DESY und dem Massachusetts Institute of Technology MIT haben eine neuartige Elektronenquelle entwickelt, die kleiner ist als eine gewöhnliche Streichholzschachtel. Die Miniquelle produziert kurze und stark gebündelte Elektronenstrahlen, die sich zur Untersuchung verschiedenster Materialien einsetzen lassen, von Biomolekülen bis hin zu Supraleitern. Außerdem könnte sie die Teilchenbeschleuniger der nächsten Generation von Röntgenlasern mit maßgeschneiderten Elektronenpaketen versorgen. Heute eingesetzte Elektronen-Guns können leicht die Größe eines Autos erreichen.
Abb.: Funktionsprinzip der Miniatur-Elektronenquelle auf Terahertz-Basis: Ein ultravioletter Blitz (blau) beleuchtet die Photokathode der Quelle von der Rückseite, wodurch eine kompakte Elektronenwolke auf der Innenseite des Geräts freigesetzt wird. Die Wolke wird unmittelbar von einem extrem intensiven Terahertz-Puls (rot) auf Energien nahe dem Kilo-Elektronenvolt-Bereich beschleunigt. (Bild: W. R. Huang, CFEL / DESY / MIT)
Die Neuentwicklung nutzt Terahertz-Strahlung statt der üblichen Hochfrequenzfelder, um Elektronen aus der Ruheposition zu beschleunigen. Da Terahertz-Strahlung viel kürzere Wellenlängen hat als Hochfrequenz-Strahlung, können die Abmessungen des gesamten Aufbaus erheblich schrumpfen. So misst die neuartige Elektronenquelle nur 34 × 24,5 × 16,8 Millimeter – das ist etwas kleiner als eine Standard-Streichholzschachtel.
„Terahertz-Elektronenquellen sind klein und effizient“, erläutert W. Ronny Huang vom MIT, der seine Arbeit am Hamburger Center for Free-Electron-Laser Science CFEL durchgeführt hat, einer Kooperation von DESY, Universität Hamburg und der Max-Planck-Gesellschaft. „Darüber hinaus können die verwendeten Terahertz-Wellenleiter viel höhere Feldstärken vertragen als bei Hochfrequenz-Wellenlängen, wodurch die Elektronen einen viel stärkeren Anschub bekommen. So entstehen deutlich intensivere und kürzere Elektronenstrahlen.“ Ultrakurze Elektronenstrahlen mit minimaler Streuung der Energie der individuellen Teilchen, hoher Ladung und geringer zeitlicher Fluktuation können beispielsweise genutzt werden, um Phasenübergänge in Metallen, Halbleitern und Molekülkristallen mit Hilfe der Methode der ultraschnellen Elektronendiffraktion zu beobachten.
„Unsere Quelle besitzt einen Nanometer-dünnen Kupferfilm, aus dem ultraviolette Strahlungsblitze kompakte Elektronenwolken herausschlagen“, erläutert Huang. „Eine maßgeschneiderte Mikrostruktur kanalisiert die eingespeiste Terahertz-Laserstrahlung dann so, dass sie die maximale Wirkung auf die Elektronen entfaltet.“ Auf diese Weise erreicht die Quelle einen Beschleunigungsgradienten von 350 Megavolt pro Meter. „Das Beschleunigungsfeld ist fast doppelt so stark wie bei den modernsten konventionellen Quellen“, sagt Huang. „Wir konnten kompakte Pakete von je 250 000 Elektronen von 0 auf 500 Elektronenvolt beschleunigen, wobei die Energie der individuellen Teilchen kaum schwankt. Mit diesen Eigenschaften könnten die Elektronenstrahlen aus unserer Quelle bereits direkt für Untersuchungen mit Hilfe der niederenergetischen Elektronendiffraktion verwendet werden.“
Das CFEL verfügt über große Hochleistungslaserlabore, in denen sich die nötige Laserstrahlung erzeugen lässt. In dem neuartigen Aufbau erzeugt derselbe Laser sowohl die ultravioletten Strahlungsblitze zur Freisetzung der Elektronenwolke als auch das Terahertz-Feld zur anschließenden Beschleunigung der Teilchen. „Das sorgt für eine zuverlässige Synchronisierung und reduziert so die zeitliche Fluktuation erheblich“, erläutert Huang. Die Quelle arbeitete in den Versuchen der Forscher über mindestens eine Milliarde Elektronenstrahlchüsse stabil.
„Elektronenquellen sind unverzichtbare Geräte, etwa um chemische Reaktionen mit Hilfe der ultraschnellen Elektronendiffraktion in atomarer Auflösung zu filmen – eine Technik, der vor allem die Gruppe von Dwayne Miller am Max-Planck-Institut für Struktur und Dynamik der Materie im CFEL den Weg bereitet“, sagt Kärtner. „Mit kleineren und besseren Elektronenquellen können etwa Biologen bessere Einblicke in die Funktion der makromolekularen Maschinerie in der Photosynthese bekommen, und Physiker können zum Beispiel die fundamentalen Wechselwirkungsprozesse in komplexen Festkörpern besser verstehen.“
„Darüber hinaus sind Elektronenquellen wichtige Komponenten von Röntgenlaser-Anlagen“, erläutert Kärtner. Am CFEL werde bereits an der nächsten Generation von Terahertz-Elektronenquellen gearbeitet. Sie soll dann ultrakurze und ultrahelle Elektronenstrahlen mit höheren, relativistischen Energien und nur zehn Femtosekunden Dauer produzieren. „Diese Geräte sollen als Photoinjektoren für kompakte Attosekunden-Röntgenlaser dienen“, berichtet Kärtner. Mit Hilfe von Attosekunden-Röntgenlasern hoffen Forscher, ultraschnelle Prozesse in der Natur zu entschlüsseln, etwa die Dynamik der Lichtabsorption und des Elektronentransports in der Photosynthese.
DESY / JOL