20.01.2016

Elektronen in perfekter Kurvenlage

Neue Rechenmethoden sorgen für optimierte Photonenquellen der vierten Generation.

Um künftig noch leistungsstärkere Synchrotronquellen zu konzipieren, ist es wichtig, die Elektronenbahnen in komplexen Magnet­strukturen mit hoher Präzision zu simulieren. Dies erfordert jedoch sehr lange Rechenzeiten. Nun hat ein Team am Helmholtz-Zentrum Berlin (HZB) die Elektronen­bahnen mit einem neuen Algorithmus simuliert und damit die erforderliche Rechenzeit verkürzen können.

Abb.: Vertikaler Schnitt durch einen Quadrupol-Magneten: Schwarz: Feldverteilung in einem definierten vertikalen Abstand zur Mittelebene. Magenta: Elektronenbahnen mit unterschiedlichen Startbedingungen. (Bild: C. Rethfeld, HZB)

In einem Elektronenspeicherring wie BESSY II laufen Elektronen mit nahezu Lichtgeschwindigkeit durch komplexe magnetische Konfigurationen, die sie immer wieder in Richtung des idealen Orbits lenken. Sie fokussieren den Strahl ähnlich wie optische Linsen das Licht. Um das Verhalten der Elektronen im Speicherring zu simulieren, muss ihre Bahn durch die Magnetanordnungen über viele tausende von Runden verfolgt werden; jedes Mal sind ihre Bahnen dabei etwas unterschiedlich, so dass eine präzise Simulation der Felder und der Bahnen lange Rechenzeit erfordert.

Ein Team aus der HZB-Abteilung Undulatoren und dem HZB-Institut Beschleuniger­physik hatte bereits 2011 eine neuartige Methode publiziert, um die Rechenzeit für Bahnen in komplexen Undulator-Feldern erheblich zu verkürzen. Der Algorithmus wurde in den Bahn­verfolgungs­code „elegant“ eingebaut, der an der Advanced Photon Source / Argonne entwickelt wurde und weltweit genutzt wird. Das Softwarepaket ist frei verfügbar.

Nun konnte der Nachwuchs­forscher Malte Titze zusammen mit den Experten Johannes Bahrdt und Godehard Wüstefeld diese Methode erweitern und zeigen, wie sie auch für eine weite Klasse von dreidimensionalen Magneten, hier insbesondere Quadrupole, Sextupole usw., angewendet werden kann.

„Die Methode liefert sehr präzise Ergebnisse, auch für sich rasch ändernde Felder besonders im Randbereich dieser Magnete“, sagt Malte Titze, der inzwischen am CERN forscht. „Solche Rechenmethoden sind für speicherringbasierte Lichtquellen der vierten Generation, insbesondere für beugungsbegrenzte Quellen, von großer Bedeutung, da hier einerseits kombinierte Magnete (z.B. Dipol plus integriertem Quadrupol) zur Anwendung kommen und andererseits Randfeldeffekte und die magnetische Wechselwirkung zwischen den Magneten eine wichtige Rolle spielen, “ erklärt Johannes Bahrdt. „Dies hat eine besondere Relevanz hinsichtlich der Nachfolgemaschine von BESSY II“.

HZB / DE

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen