05.02.2019

Elektronen mit Schwingungen verschieben

Röntgenexperimente am Modellsystem Aspirin machen Elektronenbewegungen in Echtzeit sichtbar.

Aspirintabletten bestehen aus vielen kleinen Kristalliten, in denen Moleküle der Acetyl-Salicylsäure regelmäßig angeordnet sind. Diese Moleküle sind durch vergleichsweise schwache Wechselwirkungen aneinander gekoppelt und erzeugen elektrische Felder, die Kräfte auf die Elektronen jedes Moleküls ausüben. Versetzt man die Moleküle in Schwingung, sollten sich die Verteilung der Elektronen im Raum und damit die chemischen Eigenschaften verändern. Obwohl dieses Szenario Gegenstand theoretischer Arbeiten war, fehlten bis heute ein experimenteller Nachweis und ein Verständnis der molekularen Dynamik.

Umver­teilung der Elektronen­dichte im Aspirin­molekül im Verlauf der...
Umver­teilung der Elektronen­dichte im Aspirin­molekül im Verlauf der Rotation der Methyl­gruppe. (Bild: MBI)

Wissenschaftlern des Max-Born-Instituts in Berlin ist es nun durch ein Röntgenexperiment im Ultrakurzzeitbereich erstmals gelungen, einen direkten Einblick in die Elektronenbewegung während einer gekoppelten Schwingung der Aspirinmoleküle zu erhalten. Dabei regt ein ultrakurzer optischer Pumpimpuls die Aspirinmoleküle zu Schwingungen mit einer Periode von ungefähr einer  Pikosekunde an. Ein zeitlich verzögerter harter Röntgenimpuls wird an der angeregten Pulverprobe gebeugt um die momentane räumliche Anordnung der Elektronen in Form eines Röntgenbeugungsmusters zu erfassen.

Bei der Schwingungsanregung führt die Methylrotation zu einer Verschiebung von Elektronen über das gesamte Aspirinmolekül. Diese periodische Elektronenbewegung erfolgt im Takt der Schwingung. Dabei legen die Elektronen Distanzen zurück, die etwa 10.000 Mal größer sind als die Atomauslenkungen der Methylrotation. Die Methylrotation besitzt damit einen hybriden Charakter, der Atom- und Elektronenbewegungen auf völlig unterschiedlichen Längenskalen umfasst. Ursächlich hierfür sind die elektrische Wechselwirkung zwischen den Molekülen und die dynamische Minimierung der elektrostatischen Energie des Kristalls.

Die Ergebnisse unterstreichen die zentrale Rolle von Hybridmoden für die Stabilisierung der Kristallstruktur, in Einklang mit theoretischen Analysen. Im Fall des Aspirins führt dies zum Vorherrschen einer Form der Kristallite gegenüber anderen molekularen Anordnungen. Die starke räumliche Modulation der Elektronenverteilung durch Schwingungen ist für zahlreiche Kristalle bedeutend, in denen elektrische Kopplungen auftreten. Schwingungsanregungen in ferroelektrischen Materialien sollten ein ultraschnelles Umschalten der elektrischen Polarisation und damit neue Höchstfrequenzbauelemente ermöglichen.

MBI / JOL

Weitere Infos

 

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen