Elektronenbeschleunigung an Nanokugeln
Erstmals ist die Kontrolle und Beobachtung stark beschleunigter Elektronen an Nanokugeln mit extrem kurzen und intensiven Laserpulsen gelungen.
Erstmals ist die Kontrolle und Beobachtung stark beschleunigter Elektronen an Nanokugeln mit extrem kurzen und intensiven Laserpulsen gelungen.
Wenn starkes Laserlicht auf Elektronen in Nanoteilchen trifft, die aus einem Verbund von vielen Millionen Atomen bestehen, können Elektronen freigesetzt und stark beschleunigt werden. Einen solchen Effekt in Nanokugeln aus Quarz hat jetzt ein internationales Forscherteam im Labor für Attosekundenphysik (LAP) am Max-Planck Institut für Quantenoptik aufgezeichnet.
Die Forscher beobachteten, wie sich im Laserlicht starke elektrische Felder (Nahfelder) in der Nähe der Nanoteilchen aufbauten und Elektronen freisetzten - die Nanoteilchen werden im Laserlicht ionisiert. Mit Hilfe der Nahfelder und kollektiver Wechselwirkungen der entstandenen Ladungen konnten freigesetzte Elektronen mit Licht soweit beschleunigt werden, dass sie die Grenzen der Beschleunigung, die an einzelnen Atomen bisher beobachtet wurde, weit überstiegen. Die genauen Bewegungen der Elektronen lassen sich präzise über das elektrische Feld des Laserlichtes steuern. Die neuen Erkenntnisse dieses durch Licht kontrollierten Prozesses könnten helfen, sehr energetische extreme, ultraviolette Strahlung (XUV) zu erzeugen. Durch die Experimente und ihre theoretische Modellierung, die die Wissenschaftler beschreiben, ergeben sich auch neue Perspektiven für die Entwicklung ultraschneller, lichtkontrollierter Nanoelektronik, die im Vergleich zu heutiger Elektronik um bis zu eine Million mal schneller arbeiten könnte.
Abb.: Mechanismus der Beschleunigung von Elektronen an Nanokugeln aus Glas. Das Laserfeld (rote Welle) führt zur Freisetzung von Elektronen (grüne Teilchen), die dann vom Laserfeld vom Nanoteilchen weg und anschließend wieder zurückbeschleunigt werden. Nach einem elastischen Stoß mit der Oberfläche der Nanokugel werden schließlich sehr hohe Energien für die freigesetzten Elektronen erreicht. Die Abbildung zeigt drei Momentaufnahmen der Beschleunigung (Bild: Christian Hackenberger/LMU)
Das internationale Team wurde von drei deutschen Gruppen um Matthias Kling vom Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik in Garching und der Ludwig-Maximilians Universität München, Eckart Rühl von der Freien Universität in Berlin und Thomas Fennel von der Universität Rostock angeführt. Die Forscher ließen hochintensive Lichtpulse, die rund fünf Femtosekunden dauerten, auf Nanoteilchen aus Siliziumdioxid (Quarzglas) im Größenbereich um 100 nm treffen (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde). Die Laserpulse bestanden aus nur wenigen Wellenzügen. Die Nanoteilchen verfügten über rund 50 Millionen Atome. Durch die Laserpulse wurden Elektronen von den Nano-Partikeln innerhalb von Bruchteilen einer Femtosekunde freigesetzt und im Laserfeld beschleunigt. Die Elektronen bewegten sich dabei um weniger als einen Nanometer von der Oberfläche der Nanokugeln weg, wurden zurück zur Oberfläche beschleunigt und prallten dort elastisch ab. Die Energie der Elektronen kann dabei sehr hohe Werte annehmen und entsprach im Experiment etwa dem 60ig-fachen der Energie eines Laserphotons bei ca. 700 nm (im roten Spektralbereich des Lichts).
Die Wissenschaftler konnten damit erstmals das Phänomen dieses direkten elastischen Rückstoßes in einem kollektiven Nanoverbund beobachten und detailliert aufzeichnen. Für ihre Experimente verwendeten die Forscher polarisiertes Licht. „Intensive Strahlungspulse können die Nanopartikel verändern oder zerstören. Daher haben wir isolierte Nanopartikel in einem Strahl präpariert, so dass für jeden Laserpuls frische Nanopartikel verwendet wurden. Dies ist entscheidend für die Beobachtung der hochenergetischen Elektronen“, erläutert Rühl.
Die beschleunigten Elektronen verließen die Atome in unterschiedlichen Richtungen und mit unterschiedlichen Energien. Diese Flugbahnen zeichneten die Wissenschaftler in einem dreidimensionalen Bild auf, mit dem sie die Energien und die Emissionsrichtungen der Elektronen bestimmten. „Die Elektronen werden nicht nur durch das laserinduzierte Nahfeld beschleunigt, welches selbst schon deutlich stärker als das Laserfeld ist, sondern auch durch Wechselwirkungen mit anderen Elektronen, die aus dem Nanoteilchen ausgelöst werden“, beschreibt Kling das Experiment. Schließlich spielt auch die positive Aufladung der Nanopartikel-Oberfläche eine Rolle. Da sich alle Beiträge addieren, kann die Energie der Elektronen sehr hoch sein. „Der Vorgang ist komplex, zeigt aber, dass es in der Wechselwirkung von Nanoteilchen mit starken Laserfeldern noch sehr viel zu entdecken gibt“, ergänzt Kling.
Bei den Elektronenbewegungen können auch Pulse von extremem, ultraviolettem Licht entstehen, nämlich immer genau dann, wenn die Elektronen wieder auf die Oberfläche treffen, aber statt abzuprallen, absorbiert werden und dabei Licht abgeben. Extremes ultraviolettes Licht ist vor allem für die biologische und medizinische Forschung interessant.
Munich-Centre for Advanced Photonics / AL