Elektronenpulse mit dem richtigen Dreh
Starkfeldionisation führt zu deutlicher Spinpolarisation bei Elektronenemission.
Als eine Grundeigenschaft des Elektrons spielt der Spin eine entscheidende Rolle in der elektronischen Struktur der Materie, von Molekülen und Atomen bis zu Feststoffen, wobei er beispielsweise die magnetischen Materieeigenschaften bestimmt. Ultrakurze Elektronenpulse sind einzigartige Werkzeuge, um Materialien zu untersuchen – sowohl deren Struktur als auch Dynamik – und eröffnen ein reiches Feld der ultraschnellen Bildgebung mittels Beugung. Da der Elektronenspin eine wesentliche Variable bei der Beugung darstellt, würden ultrakurze Pulse spinpolarisierter Elektronen diesem Feld eine völlig neue Dimension hinzufügen. Aber wo könnte man solche Pulse erhalten?
Abb.: Spinpolarisation gemessen als Funktion der Elektronenenergie. Die blaue Kurve ist eine theoretische Vorhersage, während die roten Punkte mit Fehlerbalken die experimentellen Ergebnisse zeigen. (Bild: MBI)
Eine Möglichkeit liegt darin, die Ionisation in starken Laserfeldern zu nutzen. Dieser Prozess erzeugt von Natur aus Elektronen in ultrakurzen Stößen. Die Bursts dauern nur einen kleinen Bruchteil der Laserperiode an, wenn sie von den Grenzen des Bindungspotentials freigesetzt werden. Aber wären diese Elektronenbursts spinpolarisiert? Überraschenderweise ist diese Frage bis vor kurzem nie gestellt worden.
Diese Situation hat sich nun mit einer gemeinsamen experimentellen und theoretischen Arbeit geändert. Mit einem Gas aus Xenon-
Die Veröffentlichung zeigt auch, dass Spinpolarisation während der Laser-
FVB / DE