Elektronenstreuung im Zeitraffer
Streuverhalten von Elektronen in dielektrischen Nanoteilchen mit hoher Präzision vermessen.
Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds. Es herrscht also relative Ruhe im dielektrischen Kristallgitter. Dieses Idyll haben nun Physiker vom Labor für Attosekundenphysik (LAP) der Ludwig-
Abb.: Elektronen benötigen nach ihrer Anregung durch ultraviolettes Licht im Mittel zirka 370 Sekunden, um ein Dielektrikum zu verlassen. (Bild: D. Luck, T. Naeser)
Die Forscher schickten auf ein rund fünfzig Nanometer dickes Glasteilchen Lichtblitze, die nur wenige hundert Attosekunden dauerten und Elektronen in dem Glas freisetzten. Gleichzeitig strahlten die Forscher ein intensives Lichtfeld auf die Glasteilchen, das nur wenige Femtosekunden wirkte und die freigesetzten Elektronen in Schwingungen versetzte. Grundsätzlich konnte es in der Folge zu zwei unterschiedlichen Reaktionen der Elektronen kommen. Zuerst setzten sie sich in Bewegung, dann stießen sie mit den Atomen aus dem Teilchen entweder elastisch oder unelastisch zusammen. Zwischen jeder Wechselwirkung konnten sich die Elektronen aufgrund des dichten Kristallgitters nur wenige Ångström frei bewegen. „Bei einem elastischen Stoß bleibt wie beim Billard die Energie des Elektrons erhalten, nur die Richtung kann sich ändern. Bei einem unelastischen Stoß werden die Atome angeregt und ein Teil der Energie der Elektronen geht verloren. Für das Experiment bedeutete dies einen Rückgang des Elektronensignals, den wir messen konnten“, beschreibt Francesca Calegari (CNR-IFN Mailand und CFEL/Universität Hamburg) die Experimente.
Da es dem Zufall überlassen ist, ob eine Interaktion elastisch oder unelastisch erfolgt, werden mit der Zeit zwangsläufig unelastische Interaktionen stattfinden und die Anzahl rein elastisch gestreuter Elektronen abnehmen. Durch genaue Messung der Schwingung der Elektronen in dem starken Lichtfeld gelang es den Forschern herauszufinden, dass es im Mittel zirka 150 Attosekunden dauerte, bis elastisch stoßende Elektronen das Nanoteilchen verlassen hatten. „Aus der gemessenen Zeitverzögerung konnten wir mittels unserer neu entwickelten Theorie eine unelastische Stoßzeit von etwa 370 Attosekunden für die Elektronen bestimmen und damit erstmals diesen Prozess in einem Dielektrikum zeitlich vermessen“, beschreibt Thomas Fennel von der Universität Rostock und dem Max-Born-
Die Erkenntnisse der Forscher könnten nun medizinischen Anwendungen zu Gute kommen. Denn mit diesen weltweit ersten Ultrakurzzeit-
„Bei jeder Einwirkung hochenergetischer Strahlung auf Gewebe werden Elektronen erzeugt, die wiederum durch unelastische Stöße Energie auf die Atome und Moleküle des Gewebes übertragen, wodurch dieses zerstört werden kann. Genaue Kenntnisse über die Elektronenstreuung sind daher für die Bekämpfung von Tumoren wichtig. Hiermit lassen sich durch Computersimulationen Behandlungen so optimieren, dass ein Tumor zerstört wird, gesundes Gewebe aber möglichst verschont bleibt“, beschreibt Matthias Kling die Bedeutung der Arbeiten. Im nächsten Schritt wollen die Wissenschaftler in den Experimenten die Glas-
MPQ / DE