05.11.2021 • Magnetismus

Exotische ferromagnetische Ordnung in zwei Dimensionen

Monoatomare Chromchlorid-Schicht zeigt für easy-plane-Magnetismus charakteristischen Phasenübergang.

Zweidimensionale Materialien wie Graphen öffnen das Tor für Anwendungen in der Informations­technik, als Displays oder als hoch­empfind­liche Sensoren. Besonderes Interesse wecken van-der-Waals-Einzel­schichten: Kombi­na­tionen von zwei oder mehr atomar dünnen Materialien, die durch schwache elektro­statische van-der-Waals-Kräfte zusammen­gehalten werden. Durch die Auswahl der Material­schichten und ihre Anordnung zueinander lassen sich elektrische, magnetische oder optische Merkmale einstellen und variieren. Allerdings: Die groß­flächige, homogene Abscheidung von van-der-Waals-Einzel­schichten mit ferro­magnetischer Eigenschaft war bislang nicht möglich. Dabei ist gerade diese Art von Magnetismus auf großer Skala für einige poten­zielle Anwendungen besonders wichtig – zum Beispiel für neuartige dauer­hafte Daten­speicher. Einem Team des MPI für Mikro­struktur­physik in Halle, der Synchrotron-Lichtquelle ALBA in Barcelona und des Helmholtz-Zentrums Berlin für Energie und Materialien ist es jetzt gelungen, ein gleich­förmiges zwei­dimen­sio­nales Material zu erzeugen – und ein exotisches ferro­magnetisches Verhalten darin nach­zu­weisen, den „easy-plane“-Magnetismus.

Abb.: STM-Topo­graphie einer ein­ato­maren Lage von Chrom­chlorid auf...
Abb.: STM-Topo­graphie einer ein­ato­maren Lage von Chrom­chlorid auf Graphen/Silizium­karbid. Die Ver­grö­ße­rung zeigt die Korn­grenzen. (Bild: MPI Halle / A. Bedoya-Pinto et al. / AAAS)

Als Werkstoff verwendeten die Forscher Chrom­chlorid, das der entsprechenden Verbindung aus Chrom und Iod in seiner Struktur ähnelt, aber deutlich robuster sein kann. Eine groß­flächige mono­atomare Schicht dieses Materials brachte das Team per Molekular­strahl-Epitaxie auf ein Substrat aus Silizium­karbid auf. Dazwischen legten die Forscher eine Schicht aus Graphen. „Sie hatte den Zweck, die Wechsel­wirkung zwischen Chrom­chlorid und Silizium­karbid zu dämpfen und so zu verhindern, dass das Substrat die Eigen­schaften der mono­atomaren Chrom­chlorid-Schicht beeinflusst. Das war der Schlüssel, um an die schwer fassbare magnetische ‘leichte Ebene‘ heran­zu­kommen“, erklärt Amilcar Bedoya-Pinto vom MPI Halle. „Im Prinzip erhielten wir so eine fast frei­schwebende ultra­dünne Schicht, die nur durch schwache van-der-Waals-Kräfte mit der Graphen-Zwischen­lage verbunden war.“

Ziel war es, die Frage zu klären, wie sich die magnetische Ordnung in Chrom­chlorid zeigt, wenn dieses nur noch aus einer mono­atomaren Schicht besteht. In ihrer normalen, drei­dimen­sio­nalen Form ist die Substanz anti­ferro­magnetisch. Dabei sind die atomaren magnetischen Momente Schicht für Schicht in jeweils entgegen­gesetzter Richtung orientiert – wodurch das Material als Ganzes nicht magnetisch erscheint. Theoretische Über­legungen deuteten bislang darauf hin, dass die magnetische Ordnung verloren­geht oder eine schwache konven­tio­nelle Magneti­sierung zeigt, wenn das Material auf eine einzige Atom­schicht reduziert wird.

Doch der Gruppe gelang es nun, das zu wider­legen – durch einen detail­lierten Blick auf die magnetischen Eigen­schaften des 2D-Materials. Dazu nutzten sie die einzig­artigen Möglich­keiten der an der Synchrotron-Strahlungs­quelle BESSY II des HZB instal­lierten Vektor­magnet­anlage VEKMAG. „Die Einrichtung ermöglicht Material­unter­suchungen mit weicher Röntgen­strahlung in einem starken Magnetfeld – und das bei Temperaturen bis nahe dem absoluten Nullpunkt“, sagt Florin Radu, der Leiter des für die VEKMAG-Anlage verant­wort­lichen Teams am HZB. „Das macht die Anlage weltweit einzig­artig.“ An dieser Anlage konnte das Team die Orientierung einzelner magnetischer Momente bestimmen und dabei exakt zwischen Chrom- und Chlor-Atomen unterscheiden.

Die Messungen zeigten, wie sich unter­halb der Curie-Temperatur eine ferro­magnetische Ordnung in dem zwei­dimen­sio­nalen Werkstoff bildete. „In der mono­atomaren Chrom­chlorid-Schicht fand ein Phasen­übergang statt, der für easy-plane-Magneten charak­te­ristisch ist, aber an einem solchen 2D-Material zuvor noch nie beobachtet worden war“, berichtet Bedoya-Pinto.

Die Entdeckung bietet nicht nur neue Einsichten in das magnetische Verhalten zwei­dimen­sio­naler Materialien. „Wir haben damit nun auch eine exzellente Plattform, um eine Vielzahl physika­lischer Phänomene zu erforschen, die es nur in zwei­dimen­sio­nalen magnetischen Materialien gibt“, erklärt Bedoya-Pinto, beispiels­weise den wider­stands­losen Transport von Spins. Sie sind die Grundlage einer neuen Form der Daten­ver­arbeitung, die – anders als die herkömm­liche Elektronik – nicht elektrische Ladungen, sondern magnetische Momente nutzt. Diese Spintronik könnte künftig unter anderem eine deutlich schnellere und energie­sparende Speicherung von Daten ermöglichen.

HZB / RK

Weitere Infos

Weitere Beiträge

 

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen