Extreme Ereignisse im Gehirn
Komplexe Netzwerke können ihr Verhalten spontan ändern – mögliche Erklärung für Epilepsie und Migräne.
Über den Computer-Bildschirm ziehen unregelmäßige feuerrote Ringe. Sie vergrößern sich, verschmelzen miteinander, lösen sich auf, bilden Nachkommen – ein stetiger Kreislauf aus Entstehen und Vergehen. Doch plötzlich wird der Schirm dunkel. Die Ringe sind verschwunden. Ein paar Sekunden lang tut sich nichts. Dann beginnt die dunkle Fläche zu pulsieren. Sie ändert rhythmisch ihre Farbe, kaum wahrnehmbar zunächst, doch dann immer deutlicher. Kurz darauf ein zweiter Wechsel: Die gesamte Fläche blitzt plötzlich rot auf. Schließlich erscheinen die Ringe wieder – das Extremereignis ist vorbei.
Abb.: Chaotischer Sattel, der das Verhalten des in Bonn und Oldenburg entwickelten Modells beschreibt. Man kann sich ihn vereinfacht als gebogenen Pferdesattel vorstellen, auf dem eine Kugel entlangrollt. (Bild: U. Bonn)
Forscher der Uni Bonn und der Uni Oldenburg haben ein Modell entwickelt, dessen Verhalten – obwohl es auf strengen Regeln basiert – sich scheinbar spontan ändern kann. Auch in der Natur kommt es häufig zu derartigen Wechseln, etwa bei der Entstehung von Migräne-Attacken oder epileptischen Anfällen: Plötzlich geraten Milliarden von Neuronen zur selben Zeit in einen Ausnahmezustand. Die Regeln, denen sie normalerweise gehorchen, scheinen mit einem Mal außer Kraft gesetzt. Der von den Wissenschaftlern erstmalig beschriebene Mechanismus könnte dazu beitragen, Extremereignisse wie diese besser zu verstehen.
Das Modell ist ein Geflecht von vielen tausend Einzelelementen, den Knoten. Diese sind miteinander vernetzt – sie können also miteinander kommunizieren und einander beeinflussen. Sie sprechen dabei nicht nur mit ihren Nachbarn, sondern auch mit einigen weit abgelegenen Knoten. Wissenschaftler sprechen von einem „Small-World“-Netzwerk. Ganz ähnlich kommunizieren auch die Nervenzellen im Gehirn miteinander.
Obwohl die Kommunikationsregeln genau festgelegt sind, zeigen derartige Netzwerke ein sehr komplexes Verhalten. Das liegt einerseits an der Vielzahl der Knoten, andererseits aber auch an der Verdrahtung dieser Knoten untereinander. „Wir konnten nun zeigen, dass sich das Verhalten derartiger Netzwerke spontan ändern kann“, erklärt Gerrit Ansmann, Erstautor der Arbeit und Doktorand in der Arbeitsgruppe Neurophysik. „Diese Wechsel erfolgen aber nur unter bestimmten Rahmenbedingungen“, erläutert Klaus Lehnertz, Leiter der Arbeitsgruppe. „Wir hoffen, mit unserem Modell besser verstehen zu können, unter welchen Bedingungen es im Gehirn zu Extremereignissen kommt.“
Der Wechsel zwischen den einzelnen Aktivitätsmustern einschließlich der Entstehung und des Verschwindens von Extremereignissen basiert auf einem grundlegenden Mechanismus, der in ähnlicher Form auch für andere Systeme, wie zum Beispiel bei Erregungsmustern im Herz anwendbar ist. Diese Allgemeingültigkeit ermöglicht vielfältige Anwendungen dieser Ergebnisse auch in anderen Wissenschaftsgebieten.
RFWU / RK