Flussquanten im Nanodraht
Aharonov-Casher-Effekt an ultradünnem supraleitendem Draht nachgewiesen.
Forschern des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-
Das internationale Wissenschaftler-Team beschreibt ein fundamentales quantenmechanisches Experiment: der erste Nachweis des Aharonov-Casher-Effekts mit einem Niobnitrid-Nanodraht in einem CQUID-Quantensensor (Charge Quantum Interference Device). Der Effekt, den die theoretischen Physiker Yakir Aharonov und Aharon Casher bereits im Jahr 1984 postulierten, beschreibt die quantenmechanische Bewegung magnetischer Flussquanten um elektrische Ladungen. Anwendungsmöglichkeiten sehen die Wissenschaftler unter anderem in einem zuverlässigen Standard zur Neudefinition der Maßeinheit Ampere, in hochauflösenden photonischen Detektoren oder als Element zur Informationsverarbeitung in Quantencomputern.
Der erstmals erfolgreich realisierte CQUID-Sensor ist das Gegenstück zu den seit Jahrzehnten bekannten supraleitenden Quanten-Interferenz-Detektoren (SQUIDs), deren Funktionsweise auf der quantenmechanischen Bewegung elektrischer Ladungen um magnetische Flussquanten beruht. Im Gegensatz dazu bewegen sich in den CQUIDs die magnetischen Flussquanten um elektrische Ladungen im Supraleiter. Den Aharonov-Casher-Effekt konnten Forscher experimentell bisher nur in Supraleitern mit gezielt präparierten Schwachstellen, den Josephson-Kontakten, nachweisen.
„Ob man das Phänomen ohne Josephson-Kontakte, also in einem Supraleiter ohne Schwachstellen, beobachten kann, wurde in der wissenschaftlichen Gemeinschaft bezweifelt. Es existierte bis jetzt kein geeignetes Material, welches die Flussquanten ungehindert durchdringen konnten“, erklärt Evgeni Il’ichev vom Leibniz-IPHT das Problem. Den entscheidenden Beitrag zur Realisierung des Experiments lieferten nun die ultradünnen, mittels Atomlagenabscheidung (ALD) gefertigten NbN-Schichten des Leibniz-IPHT.
Die Herausforderung für die Jenaer Forscher bestand darin, ein Material zu finden, dass ein quantenmechanisches Tunneln von magnetischen Flussquanten in bestimmten Bereichen der supraleitenden Struktur des CQUIDs, den Phase-Slip-Kontakten, zulässt. „Uns fielen die besonderen strukturellen und elektrischen Eigenschaften der mittels ALD erzeugten Schichten aus Niobnitrid auf. Eine spezielle Unordnung in der Kristallstruktur der Schichten ermöglicht erst das Tunneln der Flussquanten durch die zwei Einschnürungen in der CQUID-Struktur“, so Sven Linzen, Physiker am Leibniz-IPHT. Dank intensiver Technologieforschung gelang es, die nur 3,3 Nanometer dicken NbN-Filme auf einen Silizium-Träger im Reinraum des Leibniz-IPHT aufzubringen. Aus ihnen präparierten die Partner um Oleg Astafiev am National Physics Laboratory (NPL) in London den neuen CQUID-Quantensensor, mit dem der Nachweis des Quanteneffekts gelang.
„Mit dem NbN-Material und dessen Herstellungstechnologie halten wir den Schlüssel zu einer bislang verschlossenen Tür der experimentellen Quantenphysik in der Hand. Wir stehen noch am Anfang, sehen die Anwendungsfelder der neuen Phase-Slip-Kontakte und Quantensensoren aber ebenso vielfältig wie die Einsatzgebiete der bekannten Josephson-Kontakte und SQUIDs. Denkbar sind die Entwicklung eines in der Elektronikindustrie dringend benötigten Standards zur präzisen Festlegung der Stromstärke in Analogie zum Josephson-Voltstandard, neue optische Detektorkonzepte oder ein Durchbruch bei der Realisierung anwendbarer Quantenbits als Grundbausteine für zukünftige Quantencomputer“, blickt Sven Linzen in die Zukunft.
IPHT / DE