Freier Fall im Vakuum
Kosmische Gläser helfen, auf 120 Metern Bildung von Planeten nachzustellen.
Wie sich aus Gesteins partikeln Asteroiden und Planeten bilden, untersuchen Wissenschaftler der Universitäten Münster und Braunschweig in einem Experiment anhand von kleinen Kugeln. Diese bestehen aus einem am Fraunhofer-Institut für Silicatforschung ISC entwickelten Spezialglas, das die Zusammensetzung von Gesteinspartikeln aus dem Weltraum möglichst naturgetreu in kleinem Maßstab abbildet.
Abb.: Der Blick von oben in den Ofeninnenraum zeigt vom Fraunhofer ISC hergestellte Glaskügelchen, die für Experimente zur Weltraumforschung eingesetzt werden. (Bild: Fh.-ISC)
4,57 Milliarden Jahre ist die Erde alt – eine unvorstellbare zeitliche Dimension. Um nachzuvollziehen, wie der blaue Planet einst entstanden ist, analysieren Wissenschaftler heute andere Körper unseres Sonnensystems wie etwa Bruchstücke von Asteroiden, die nach Kollisionen im All als Meteorite auf der Erde eingeschlagen sind.
Nach heutigem Wissensstand haben sich viele planetare Körper durch den Zusammenschluss von Chondren – das sind etwa 0,1 bis 3 mm große Silicatkügelchen – gebildet. Einblicke darüber, wie dieser kosmische Gesteinsbildungsprozess abläuft, geben Experimente mit winzigen aus Spezialglas geformten Kügelchen, die die Chondren möglichst realistisch abbilden sollen.
Bisherige Erkenntnisse deuten darauf hin, dass die ursprünglichen Teilchen die Konsistenz von heißem, flüssigem Glas hatten, bevor sie zu größeren Gesteinskonglomeraten aggregierten, abkühlten und auskristallisierten. „Dieses Glas unterscheidet sich von der Materialzusammensetzung stark von technischen Gläsern, mit denen wir üblicherweise arbeiten“, erklärt Dr. Martin Kilo, Abteilungsleiter „Glas“ am Fh.-ISC. Die Zusammensetzung bedingt jedoch physikalische Eigenschaften wie etwa das Schmelz- und Kristallisationsverhalten. Beides spielt eine zentrale Rolle beim Entstehungsprozess größerer Gesteinskörper. „Wir haben daher vorab mit Modellierungsprogrammen berechnet, welche Schmelzbedingungen bei den geforderten Zusammensetzungen herrschen, wie stabil die Glasteilchen sind und bei welchen Temperaturen sie in welcher Form kristallisieren“, so Kilo. Eine weitere Herausforderung bestand darin, den Glasteilchen ihre Kugelform zu geben.
Für das Experiment haben die Würzburger mehrere Varianten ihrer Kügelchen hergestellt, die sich in ihrer Materialzusammensetzung geringfügig unterscheiden. Diese Kugeln wurden zunächst in speziellen Schmelzaggregaten erhitzt, bei denen sich die Temperatur und Atmosphäre exakt einstellen lassen. Diejenigen Kugeln, die nach diesen Testschmelzen den Eigenschaften aus dem theoretischen Modell am nächsten kamen, wurden für das Projekt ausgewählt.
Das Forschungsteam der Universitäten Münster und Braunschweig setzt die kosmischen Glaskügelchen aus dem ISC nun bei Experimenten am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen ein: Der dort betriebene Fallturm umschließt eine 120 Meter hohe stählerne Fallröhre, in welcher ein Hochvakuum erzeugt wird. Mittels eines Katapultsystems werden die Glaskügelchen in einer Kapsel bis zur Spitze der Fallröhre geschossen. Auf diese Weise erreicht man ca. 9,5 Sekunden Schwerelosigkeit – also Bedingungen wie im All. Die Glaskügelchen werden in dieser Zeit auf bis zu 1100°C erhitzt.
Während des Fallvorgangs kollidieren die Kugeln und bilden Cluster. Die Experten zeichnen das Kollisionsverhalten mit Hochgeschwindigkeitskameras auf, die Kollegen an der TU Braunschweig werten es aus. „Unsere Münsteraner Kollegen untersuchen dann, wie die Kugeln zusammenwachsen, ob die Cluster aus einer homogenen Masse bestehen oder ob die Form der einzelnen Kugeln noch erkennbar ist und ob und inwieweit es zur Auskristallisierung kommt“, erläutert Kilo. Im nächsten Schritt wollen die Planetologen dann die Ergebnisse mit Beobachtungen an Meteoriten vergleichen und Rückschlüsse auf die Gültigkeit ihrer theoretischen Modelle ziehen.
Fh.-ISC / LK