Frequenzumwandlung einzelner Photonen
Photonische Kristallfaser mit Hohlkern ermöglichen Frequenzkonversion.
Die Teams um David Novoa, Nicolas Joly und Philip Russell vom Max-Planck-Institut für die Physik des Lichts erzielten einen Durchbruch bei der Frequenzumwandlung einzelner Photonen auf der Grundlage einer mit Wasserstoffgas gefüllten Photonischen Kristallfaser (PCF) mit Hohlkern. Zunächst wird in dem Gas der Kristallfaser ein räumlich-zeitliches Hologramm molekularer Schwingungen durch die stimulierte Raman-Streuung erzeugt. Dieses Hologramm wird dann für die hocheffiziente, korrelationserhaltende Frequenzumwandlung von Einzelphotonen genutzt.
Das System arbeitet bei einer durch Druck einstellbaren Wellenlänge – diese Möglichkeit macht es für die Quantenkommunikation sehr interessant: „Bislang sind keine effizienten Quellen für ununterscheidbare Einzelphotonen bei Wellenlängen verfügbar, die mit den bestehenden Glasfasernetzen kompatibel sind“, sagt Nicolas Joly.
Der Ansatz kombiniert Quantenoptik, gasbasierte nichtlineare Optik, Hohlkern-PCF und die Physik der Molekülschwingungen zu einem effizienten Werkzeug, das in jedem Spektralband vom Ultraviolett bis zum mittleren Infrarot arbeiten kann – ein extrem breiter Arbeitsbereich, der für bestehende Technologien bislang unzugänglich ist. Die Ergebnisse können zur Entwicklung von faserbasierten Werkzeugen in Technologien wie der Quantenkommunikation und quantengestützter Bildgebung genutzt werden.
MPL / JOL