Galaxie M 87: Teilchenbeschleunigung im Zentrum
Wissenschaftler beobachten erstmals das Zentrum der Galaxie gleichzeitig im Gamma- und im Radiolicht und lokalisieren den Ort der Teilchenbeschleunigung.
Erstmals beobachten Wissenschaftler das Zentrum der Galaxie M 87 gleichzeitig im Gamma- und im Radiolicht. Dabei fanden sie, daß die Elementarteilchen tatsächlich in der Nähe des Schwarzen Lochs auf sehr hohe Energien beschleunigt werden.
Messier 87 ist eine gigantische elliptische Radiogalaxie in unmittelbarer Nachbarschaft unserer Milchstraße, etwa 55 Millionen Lichtjahre entfernt. In ihrem Zentrum befindet sich ein Schwarzes Loch mit einer mehr als sechs Milliarden Mal größeren Masse als der unserer Sonne. In Jets werden aus dem Herz der Galaxie geladene Teilchen (Elektronen und Protonen) auf nahezu Lichtgeschwindigkeit beschleunigt. Dabei entsteht sehr hochenergetische Gammastrahlung. Die Beobachtung dieser Strahlung erlaubt es, extreme physikalische Bedingungen im Universum zu erforschen, wie sie sich in keinem irdischen Labor simulieren lassen.
Abb.: In den hell leuchtenden Materieausflüssen aus dem Zentrum von M 87 werden Teilchen auf sehr hohe Geschwindigkeiten gebracht. Durch die Kombination von Beobachtungen im Bereich von Radiowellen und Gammastrahlung haben Forscher jetzt gezeigt, dass Teilchen in der unmittelbaren Nähe des zentralen supermassiven Schwarzen Lochs zu sehr hohen Energien beschleunigt werden. (Bild: NASA und das Hubble Heritage Team STScI/AURA)
Erste Anzeichen hochenergetischer Gammastrahlung aus M 87 entdeckten Forscher bereits im Jahr 1998 mit den HEGRA-Teleskopen, dem Vorgängerexperiment von H.E.S.S. und MAGIC. Dieses Ergebnis bestätigten im Jahr 2006 Messungen mit den H.E.S.S.-Teleskopen. Die H.E.S.S.-Beobachtungen zeigten außerdem eine rasche Variation der Gammastrahlenintensität innerhalb weniger Tage: Offenbar ist die Quellregion der hochenergetischen Gammastrahlung ungewöhnlich kompakt. So vermuten die Wissenschaftler eine enge Beziehung zur unmittelbaren Umgebung des supermassiven Schwarzen Lochs im Zentrum der elliptischen Riesengalaxie.
Um diesen Verdacht zu prüfen, begannen Forscher der MAGIC- und H.E.S.S.-Kollaborationen an den Max-Planck-Instituten für Physik (München) und Kernphysik (Heidelberg) mit Kollegen der VERITAS-Kollaboration (USA) und dem Radioteleskop-Netzwerk VLBA im Januar 2008 zusammenzuarbeiten. So beobachteten sie bis Mai 2008 die Radiogalaxie M 87 für mehr als 120 Stunden gleichzeitig in den niedrigsten und höchsten Bereichen des elektromagnetischen Spektrums. Innerhalb dieses Zeitraums verfolgten die Forscher auch zwei große Gamma-Ausbrüche bei sehr hohen Energien.
Abb.: Die zeitliche Abfolge von Bildern im Radiolicht des innersten Bereichs von M 87 zeigt einen Anstieg des Radioflusses aus dem Zentrum der Galaxie im Frühjahr 2008. Während des Anstiegs ließ sich verstärkte Aktivität auch im hochenergetischen Gammastrahlungsbereich beobachten. (Bild: MAGIC/HESS/VERITAS/VLBA-Team)
Die hochauflösende Beobachtung der inneren Region von M 87 mit dem Radioteleskopsystem Very Large Baseline Array (VLBA) belegte einen stetigen Anstieg des Radioflusses aus dem Zentrum von Messier 87 - aus der unmittelbaren Nähe des supermassiven Schwarzen Lochs. Diese Kombination von Beobachtungen in den niedrigsten (Radiowellen) und höchsten (Gammastrahlen) Bereichen des elektromagnetischen Spektrums ermöglichte es zum ersten Mal, den Gammastrahlungsausbruch zu lokalisieren - und damit den Ort der Teilchenbeschleunigung in M 87 auszumachen.
*********************
Das MAGIC-Teleskop auf der Kanareninsel La Palma und die H.E.S.S.-Teleskope in Namibia gehören zur neuesten Generation der atmosphärischen Cherenkov-Teleskope. Mit ihren Spiegeldurchmessern von 17 Metern (MAGIC) und vier mal jeweils 13 Metern (H.E.S.S.) sowie ultra-schneller Elektronik beobachten sie schwache blaue Lichtblitze - das Cherenkov-Licht. Diese Lichtblitze entstehen, wenn hochenergetische Gammateilchen mit den Atomen und Molekülen der Atmosphäre reagieren und einen Schauer aus sub-atomaren Teilchen auslösen.
Die H.E.S.S.-Kollaboration besteht aus mehr als 150 Wissenschaftlern aus Deutschland, Frankreich, Großbritannien, Polen, Tschechien, Irland, Österreich, Schweden, Armenien, Südafrika und Namibia. Die vier H.E.S.S.-Teleskope (für "High Energy Stereoscopic System") sind seit Anfang 2004 in Betrieb und haben seitdem schon zu wichtigen Entdeckungen geführt, etwa dem ersten astronomischen Bild eines Supernova-Überrests in hochenergetischer Gammastrahlung sowie zum Fund einer großen Anzahl von Gammastrahlungsquellen in der galaktischen Ebene.
Das MAGIC-Teleskop (für "Major Atmospheric Gamma-Ray Imaging Cherenkov") steht auf dem Gelände des Roque de los Muchachos-Observatoriums auf der Kanareninsel La Palma und wird von einem internationalen Team von etwa 150 Wissenschaftlern aus Deutschland, Italien, Spanien, der Schweiz, Polen, Finnland, Kroatien, Bulgarien und den USA betrieben. Seit 2004 in Betrieb, hat MAGIC unter anderem die am weitesten entfernte Quelle hochenergetischer Gammastrahlung aufgespürt. Außerdem wurde mit der Anlage erstmals pulsierende Gammastrahlung von einem schnell rotierenden Neutronenstern im Krebsnebel nachgewiesen.
In Zukunft setzen die beiden Forschungsgruppen ihre Zusammenarbeit im europäischen Projekt CTA ("Cherenkov Telescope Array") fort. Dieses Cherenkov-Observatorium der nächsten Generation wird aus etwa hundert Einzelteleskopen bestehen und eine um einen Faktor zehn verbesserte Messempfindlichkeit aufweisen als derzeitige Instrumente.
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Infos:
- Originalveröffentlichung:
V. A. Acciari et al.: Radio Imaging of the Very-High-Energy Gamma-Ray Emission Region in the Central Engine of a Radio Galaxy. Science Express, Onlinepublikation vom 2. Juli (2009)
http://dx.doi.org/10.1126/science.1175406
- H.E.S.S. Projekt
http://www.mpi-hd.mpg.de/hfm/HESS/
- MAGIC-Projekt
http://wwwmagic.mpp.mpg.de/
- H.E.S.S. blickt in den "Maschinenraum" einer Galaxie (Pressemitteilung der Max-Planck-Gesellschaft, 26. Oktober 2006)
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2006/pressemitteilung20061025/index.html
- Max-Planck-Institut für Kernphysik
http://www.mpi-hd.mpg.de/mpi/de/start/
- Max-Planck-Institut für Physik
http://www.mpp.mpg.de/