Gebackene Nano-Keramiknudeln
Flammentransport-Synthese produziert 3D-Materialien aus Zinnoxid mit festen geometrischen Strukturen.
Bei der Herstellung nanoskaliger Materialien arbeiten Forscher oft in Ganzkörperanzügen und halten in Hightech-Laboren jedes Staubkorn von ihren sensiblen Erfindungen fern. Doch das ist nicht immer notwendig, wie Wissenschaftler der Uni Kiel jetzt zeigen. Ihnen gelang die Herstellung von Nanostrukturen mittels einfacher, aber hoch effektiver Flammentechnologie, genannt Flammentransport-Synthese. Dieses „Backen“ von Nanostrukturen erwies sich bereits als großer Erfolg bei der Erforschung von Zinkoxid. Die neuen Erkenntnisse des Teams konzentrieren sich auf Zinnoxid, wodurch sich eine Vielzahl neuer Anwendungsmöglichkeiten ergibt.
Abb.: Die Nudel-ähnliche Zinnoxid-Struktur schwingt unter dem Strahl des Elektronenmikroskops. (Bild: Y. K. Mishra/Wiley-VCH)
Kompakte Materialstücke von Metalloxiden sind üblicherweise sehr spröde, was ihre Nutzung sehr einschränkt. Sobald die Oxide eindimensionale Strukturen bilden, zum Beispiel als lange flache Bänder, sind sie schon für sehr viel mehr Anwendungen geeignet. Das hängt mit dem veränderten Verhältnis von Oberfläche zu Volumen zusammen, wodurch sie außergewöhnliche physikalische und chemische Eigenschaften wie ein hohes Maß an Dehnbarkeit entwickeln. Aber auch eindimensionale Nanostrukturen sind in der Praxis schwer zu handhaben, denn sie lassen sich kaum in andere Technologien integrieren. Um dieses Problem zu beheben, wollten die Forscher um Yogendra Kumar Mishra aus eindimensionalem Zinnoxid eine dreidimensionale Struktur entwickeln. Heraus kam eine flexible Keramikstruktur, die die meisten Eigenschaften ihrer nanoskaligen Basis beibehalten hat. Dadurch kann sie für vielfältigste Anwendungen eingesetzt werden. „Wir freuen uns sehr, dass unsere erst kürzlich anhand von Zinkoxid entwickelte Flammentransport-Synthese jetzt die Herstellung von 3D-Netzwerken aus Zinnoxid ermöglicht“, erklärt Mishra.
Das Besondere ist die Struktur der einzelnen Band-ähnlichen Elemente, die bei der Synthese aus Zinnoxid entstehen. Keramik, die mithilfe von Zinkoxid produziert wird, bildet sehr kurze Tetrapodenstrukturen aus. Zinnoxid bildet dagegen lange flache Strukturen, vergleichbar mit Bandnudeln. Und diese langen, flachen Nudeln wachsen in einer speziellen Art zusammen: Der Ofen für die Synthese hält die Temperatur immer kurz unter dem Schmelzpunkt von Zinnoxid. Somit entstehen durch eine kinetische anstelle einer thermodynamischen Kontrolle Verbindungsstellen zwischen den Bändern. Diese Verbindungsstellen werden in einen bestimmten Winkel gezwungen, die strengen geometrischen Regeln folgen. Das basiert auf Zwillingsdefekten, wie die Forscher durch spätere Simulationsstudien bestätigen konnten. Ihre Erkenntnisse über die 3D-Zinnoxid-Struktur, also die zusammengewachsenen Nudeln, konnten die Wissenschaftler anhand eines Transmissionselektronenmikroskops nachvollziehen.
Das 3D-Zinkoxid-Netzwerk weist Eigenschaften wie zum Beispiel elektrische Leitfähigkeit, Stabilität bei hohen Temperaturen oder eine sehr weiche und dehnbare Struktur auf. Dadurch ist es ideal geeignet für diverse technische Anwendungen. Tragbare elektronische Sensoreinheiten haben die Wissenschaftler beispielsweise schon herstellen können. Diese ließen sich laut Mishra für Solarzellen oder bei der Gasdetektion einsetzen: „Bisher haben wir uns vor allem Sensortechnik angeschaut“, so der Forscher. „Genauso möglich sind aber auch flexible und dehnbare elektronische Geräte, Antriebselemente, Batterien, intelligente Kleidung oder Opfertemplate für die Herstellung neuer Materialien.“ Die Wissenschaftler sind sich sicher: Derartige 3D-Netzwerk-Materialien aus Zinnoxid mit festen geometrischen Strukturen und entstanden aus der Flammentransport-Synthese sind die Zukunft für die Herstellung von Nanomaterialien und deren Anwendungen.
CAU / RK