14.05.2024

Geregeltes Laserbohren von Microvias

Messverfahren auf Basis laserinduzierter Plasmaspektroskopie soll die Qualität prüfen.

Bei der Fertigung von Leiterplatten werden Microvias, also mikrometerfeine Durchkontaktierungen, in mehrlagige Leiterplatten gebohrt. Laserbohrer bewältigen diese Strukturierung mit hohem Durchsatz und einer Präzision von wenigen Mikrometern. Ein Messverfahren auf Basis laserinduzierter Plasmaspektroskopie soll dabei in Zukunft die Qualität der Bohrungen inline prüfen und den Prozess regeln.

Abb. Mikrometerfeine Durchkontaktierungen in Leiterplatten müssen sehr...
Abb. Mikrometerfeine Durchkontaktierungen in Leiterplatten müssen sehr präzise gebohrt werden. Ein neues Messverfahren soll es in Zukunft ermöglichen, den Laserbohr-Prozess von solchen Mikrovias zu regeln.
Quelle: 3D-Micromac AG

In dem Kooperationsprojekt untersuchen die Teams, wie extrem starkes Quantenlicht mit Materie wechselwirken kann. Die Forscher beleuchten nanometergroße Metallnadelspitzen mit Pulsen aus klassischem Licht und Quantenlicht. Sie detektieren die aus dem Metall freigesetzten Elektronen und untersuchen deren statistische Eigenschaften.

Die Elektronen, die unter der Einwirkung von klassischem Licht emittiert werden, folgten einer Poisson-Verteilung, jedes Elektron wird also unabhängig von den anderen emittiert. Ihre Anzahl variierte nur geringfügig von Puls zu Puls. Durch den Wechsel zu einer Quantenlichtquelle, sogenannten gequetschtem Licht, welche starke Fluktuationen der Photonenzahl aufweist, konnten die Forscher zeigen, dass die Statistik der Photonen auf die Elektronen übertragen werden kann. So konnten die Wissenschaftler extreme statistische Ereignisse mit bis zu 65 Elektronen aus einem Lichtpuls messen, bei einem Durchschnittswert von 0,27 Elektronen pro Puls. Im Falle einer Poisson-Statistik wäre die Wahrscheinlichkeit eines solchen Ereignisses, also eines Ausreißers, der den Mittelwert um den Faktor 240 übersteigt, lediglich 10-128. Indem die Anzahl der Moden des gequetschten Vakuums verändert wurde, konnten die Wissenschaftler die Elektronenzahlverteilung nach Bedarf anpassen.

„Unsere Ergebnisse zeigen, dass die Photonenstatistiken von dem antreibenden Licht auf die emittierten Elektronen übertragen werden kann, was die Tür zu neuen Sensorgeräten und Starkfeldoptiken mit Quantenlicht und Elektronen öffnet“, sagt Maria Chekhova, Forschungsgruppen-Leiterin am MPL.

MPL / RK

Content-Ad

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Das Park FX200 ist ideal für Forschung und Industrie zur automatisierten Messung von bis zu 200mm großen Proben und bietet bedeutende Fortschritte in der AFM-Technologie

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Meist gelesen

Themen