Großes Elektron, große Gitterschwingung
Die Stärke der Elektron-Phonon-Wechselwirkung hängt von der Größe des Elektrons ab.
Die Halbleiterelektronik beruht auf der Erzeugung, Steuerung und Verstärkung elektrischer Ströme in Bauelementen wie dem Transistor. Träger des elektrischen Stroms sind frei bewegliche Elektronen, die mit hoher Geschwindigkeit durch das Kristallgitter des Halbleiters wandern. Dabei verlieren sie einen Teil ihrer Bewegungsenergie, indem sie die Atome des Kristallgitters in Schwingungen versetzen. In Halbleitern wie Galliumarsenid werden die positiv und negativ geladenen Ionen des Kristallgitters ausgelenkt und schwingen mit einer extrem kurzen Periodendauer von 100 Femtosekunden (1 fs = 10–15 s = 1 Milliardstel einer Millionstel Sekunde) gegeneinander. Im Mikrokosmos der Elektronen und Ionen ist die Schwingungsbewegung quantisiert. Das bedeutet, dass die Energie dieser Schwingung nur ein ganzzahliges Vielfaches eines Schwingungsquants, eines sog. Phonons, sein kann. Bei der Wechselwirkung eines Elektrons mit dem Kristallgitter, der sog. Elektron-Phonon-Wechselwirkung, werden Energiepakete in Form einzelner Schwingungsquanten übertragen.
Forscher des Berliner Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie fanden gemeinsam mit Kollegen nun heraus, dass die Stärke der Elektron-Phonon-Wechselwirkung abhängig ist von der Größe des Elektrons, d.h. von der räumlichen Ausdehnung seiner Ladungswolke. Experimente im Zeitbereich der Phonon-Schwingungsperiode zeigen, dass für eine reduzierte Ausdehnung der Elektronenwolke eine bis zu 50fach verstärkte Wechselwirkung auftritt. Hierdurch lassen sich die Bewegungen der Elektronen und der Ionen so stark aneinander koppeln, dass die Einzelbewegungen nicht mehr erkennbar sind. Elektron und Phonon bilden ein neues Quasiteilchen, ein Polaron.
Messungen ergeben sog. zweidimensionale nichtlineare Spektren, in denen gekoppelte optische Übergänge getrennt erscheinen. (Quelle MBI)
Um dieses Phänomen sichtbar zu machen, verwendeten die Wissenschaftler Nanostrukturen aus Galliumarsenid und Galliumaluminiumarsenid, in denen die Energien der Elektronen und der Ionenbewegung aneinander angepasst waren. Die Kopplung der Bewegungen machte ein neues optisches Verfahren sichtbar. Das System wird durch mehrere ultrakurze Lichtimpulse im Infraroten angeregt und das von den bewegten Ladungen abgestrahlte Lichtfeld wird in Echtzeit gemessen. Die Messungen ergeben sog. zweidimensionale nichtlineare Spektren, in denen gekoppelte optische Übergänge getrennt erscheinen und aus denen sich die Kopplungsstärke zwischen Elektronen und Phononen ableiten lässt. Aus der Auswertung der Messdaten ergibt sich die Ausdehnung der Elektronen-Ladungswolke, die nur 3 bis 4 Nanometer (1 Nanometer = 10–9 m = 1 Milliardstel Meter) beträgt. Darüber hinaus beweist die neue Methode erstmals den starken Einfluss der Elektron-Phonon-Kopplung auf die optischen Spektren des Halbleiters. Dies bietet interessante Perspektiven für die Entwicklung optoelektronischer Bauelemente mit maßgeschneiderten optischen und elektrischen Eigenschaften.
Christine Vollgraf, Forschungsverbund Berlin e.V./AH