21.07.2008

Hula-Hoop der Moleküle

Japanischen Forschern gelangen "Schnappschüsse" einzelner molekularer Rotoren, aus denen sich die Drehbewegung ableiten lässt.



Der Traum von nanoskopischen Robotern beschäftigt die Menschheit seit langem. Und inzwischen scheint dieser Traum durchaus realistische Züge anzunehmen. So hat die Nanowissenschaft bereits Bauteile für Maschinen in Molekülgröße hervorgebracht. Eine Art von Motor sind Rotoren, bewegliche Teile, die um eine Achse rotieren. Eine solche Drehbewegung in moleklarem Maßstab zu beobachten, ist eine extrem schwierige Angelegenheit. Japanische Forscher von den Universitäten Osaka und Kyoto haben diese Herausforderung nun gemeistert. Wie das Team um Akira Harada in der Zeitschrift Angewandte Chemie berichtet, gelangen ihnen „Schnappschüsse“ einzelner molekularer Rotoren, aus denen sich die Drehbewegung ableiten ließ.

Als Versuchsobjekt wählten die Wissenschaftler ein Rotaxan. Es handelt sich dabei um ein zweiteiliges molekulares System: Auf ein Molekül in Form eines Stabes wird ein zweites, ringförmiges Molekül wie eine Manschette aufgefädelt. Ein Stopper am Stabende verhindert, dass der Ring sich wieder abfädeln kann. Das eine Ende des Stabs fixierten die Forscher auf einem Glasträger. Um die Rotationsbewegung der Manschette um den Stab verfolgen zu können, knüpften die Wissenschaftler eine fluoreszierende Seitengruppe als Sonde an die Manschette.

Der Nachweis der Rotation des Rings um den Stab gelang mithilfe einer speziellen Mikroskopie-Technik, der defokussierte Weitfeld-Totalreflexions-Fluoreszenzmikroskopie. Mit ihr lassen sich Schnappschüsse einzelner Rotaxan-Molekülen in Form von Beugungsmustern erzeugen. Ist die Manschette in Ruhe, lässt sich aus diesen Mustern, vereinfacht gesprochen, die Richtung ermitteln, in die die Sonde ihr Fluoreszenzlicht emittiert. Daraus lässt sich die Orientierung der Manschette berechnen. Sie bleibt bei jedem Schnappschuss konstant. Rotiert die Manschette dagegen, ergibt das Beugungsmuster keine Raumrichtung der Sonde.

Wie sich zeigte, dreht sich die Manschette des Rotaxans nicht, wenn die Probe trocken ist. Im nassen Zustand ist dagegen eine sehr rasche Dreh/Schwingbewegung zu beobachten. Die Manschette rotiert dabei schneller als für eine Aufnahme benötigt wird: Die Rotationsgeschwindigkeit liegt damit oberhalb von 360° in 300 Millisekunden.

Quelle: Angewandet Chemie

Weitere Infos:

  • Originalveröffentlichung:
    DaiNishimura,Yoshinori Takashima, Hiroyuki Aoki, Toshiaki Takahashi, Hiroyasu Yamaguchi, Shinzaburo Ito, and Akira Harada, Single-Molecule Imaging of Rotaxanes Immobilized on Glass Substrates: Observation of Rotary Movement, Angewandte Chemie 120, 6166–6168 (2008).
    http://dx.doi.org/10.1002/ange.200801431
  • Laboratory of Supramolecular Science, Department of Macromolecular Science, Graduate School of Science, Osaka University:
    http://www.chem.sci.osaka-u.ac.jp/lab/harada/Eng/Lab-01e.htm

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen