Hydrodynamischer Elektronenfluss in 3D-Materialien
In Materialien mit hoher Elektronendichte wechselwirken Elektronen nicht direkt, sondern durch Phononen.
Elektronen fließen durch die meisten Materialien eher wie ein Gas als wie eine Flüssigkeit, was bedeutet, dass sie nicht miteinander wechselwirken. Lange Zeit wurde vermutet, dass Elektronen unter bestimmten Bedingungen dennoch wie eine Flüssigkeit fließen könnten, aber erst die jüngsten Fortschritte im Bereich neuer Quantenmaterialien und Messtechniken ermöglichten es, diese Effekte in 2D-Materialien zu beobachten. Im Jahr 2020 wurde ein hydrodynamischer Elektronenfluss in Graphen abgebildet, wie Wasser, das durch ein Rohr fließt. Jüngste theoretische und experimentelle Forschungsarbeiten deuteten darauf hin, dass ein hydrodynamischer Elektronenfluss auch in 3D-Metallen möglich ist, aber wie er genau abläuft oder wie man ihn beobachten kann, blieb unbekannt. Bis jetzt.
Ein Team von Forschern der Harvard University, des MIT und des MPI für chemische Physik fester Stoffe entwickelte Experimente und eine Theorie zur Erklärung des hydrodynamischen Elektronenflusses in 3D-Metallen und beobachtete ihn zum ersten Mal mit einer neuen Bildgebungstechnik.
Die Forscher schlugen vor, dass Elektronen in Materialien mit hoher Elektronendichte nicht durch direkte Wechselwirkungen, sondern durch Phononen miteinander wechselwirken könnten. Und tatsächlich konnte in der neuen Studie gezeigt werden, dass hydrodynamischer Elektronenfluss in dem dreidimensionalen Metall Wolframditellurid durch einen solchen Mechanismus auftritt.
„Es ist aufregend zu sehen, dass Elektronen durch ein dünnes Stück Metall fließen, wie Wasser durch ein Rohr“, sagt Team-Mitglied Johannes Gooth. „Als wir vor vier Jahren mit der Planung der Experimente begannen, war das völlig unklar. Der Mechanismus hinter dem hydrodynamischen Elektronenfluss ist sehr allgemein und stellt unser allgemeines Verständnis von Metallen noch einmal auf den Kopf. "
MPI-CPfS / RK