31.03.2010

Jülicher Supercomputer simuliert größtes Quantencomputersystem

JUGENE setzt Shor-Algorithmus mit 42 Rechenbits um.

JUGENE setzt Shor-Algorithmus mit 42 Rechenbits um.

Ein Quantencomputer könnte heutige Computer an Rechengeschwindigkeit enorm übertreffen. Jedoch existieren im Labor bislang nur kleine Prototypen mit einer Kapazität von wenigen Rechenbits. Zumindest in Simulationen können sie nun detaillierter erforscht werden. Der Jülicher Supercomputer JUGENE simuliert dazu nun das weltweit größte Quantencomputersystem mit 42 Bits.

"Die Rechenleistung eines Quantencomputers wächst exponentiell mit seiner Größe", sagt Kristel Michielsen vom Jülich Supercomputing Centre. "Das ist sowohl eine enorme Chance für künftige Anwendungen als auch große Herausforderung für heutige Simulationen." Erweitert man einen Quantencomputer um ein einzelnes Rechenbit, verdoppelt sich direkt seine Rechenleistung aufgrund der quantenmechanischen Gesetze, die ihm zugrunde liegen. Die Rechenleistung eines klassischen Computers wächst nur linear mit seinen Komponenten: Zehn Prozent mehr Transistoren bewirken (im Idealfall) auch nur zehn Prozent mehr Leistung.

Will man einen Quantencomputer mit heutiger Rechenpower simulieren, stößt man schnell an die Grenzen: Für einen Quantencomputer mit 42 Rechenbits benötigt man Anlagen wie den Jülicher Supercomputer JUGENE, der mit fast 300 000 Prozessoren und einer Leistung von einer Billiarde Rechenoperationen pro Sekunde der schnellste Rechner Europas ist. Eine der gängigen Test-Anwendungen für Quantencomputer, der Shor-Algorithmus, wurde erfolgreich mit 42 Rechenbits umgesetzt. Der Algorithmus zerlegte die Zahl 15 707 in das Produkt 113 mal 139. Damit lassen sich nun in der Simulation Zahlen zerlegen, die rund 1000-mal größer sind als bislang mit experimentellen Quantencomputern.

Das Jülicher Forscherteam und die Arbeitsgruppe Computational Physics der University of Groningen in den Niederlanden hat für den Weltrekord die Simulationssoftware so weiterentwickelt, dass diese effizient auf der großen Zahl an Prozessoren läuft. "Wenn viele Prozessoren zusammenarbeiten sollen, kann es bei einfachen Algorithmen schnell passieren, dass Prozessoren aufeinander warten und so Leistung verloren geht", sagt Michielsen. "Unsere Software ist darauf optimiert, tausende Prozessoren nahtlos zusammenarbeiten zu lassen. Sie skaliert fast perfekt."  Skalierbarkeit wird auch bei den Multi-Core-Prozessoren in PCs eine immer stärkere Rolle spielen.

Aufbauend auf der jetzt entwickelten Simulationssoftware wird es möglich werden, Phänomene und Dynamik von quantenmechanischen Systemen im Detail zu erforschen. Während heutige Prototypen im Labor erst eine Größe von acht Bits ereicht haben, lassen sich nun in der Simulation die Eigenschaften größerer Systeme effizient untersuchen. Insbesondere wie sich äußere Einflüsse auf das empfindliche Quantensystem auswirken und sich daraus resultierende Fehler ausgleichen lassen, kann mit Simulationen einfach erprobt werden. Das liefert wertvolle Erkenntnisse für Laborexperimente.

Forschungszentrum Jülich/KP

Weitere Infos:

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen