Kagome-Supraleiter schlägt hohe Wellen
Theorie eines exotischen Quantenphänomens experimentell bestätigt.
Seit rund fünfzehn Jahren steigt das Forschungsinteresse an Kagome-Materialien, deren sternförmige Struktur an ein gleichnamiges japanisches Korbgeflecht erinnert. Erst seit 2018 lassen sich auch Metalle aus dieser Materialklasse im Labor herstellen. Aufgrund ihrer besonderen Kristall-Geometrie kombinieren die Kagome-Metalle ungewöhnliche elektronische, magnetische sowie supraleitende Eigenschaften, was sie zu vielversprechenden Kandidaten für künftige Quantentechnologien macht. Ronny Thomale, der am Würzburg-Dresdner Exzellenzcluster ct.qmat – Complexity and Topology in Quantum Matter – forscht, hat mit frühen theoretischen Vorhersagen entscheidende Vorarbeiten zu dieser Werkstoffklasse geleistet. Die neusten Forschungsergebnisse wecken nun die Hoffnung, dass neuartige elektronische Bauteile möglich werden, beispielsweise supraleitende Dioden.
Vergangenes Jahr entwickelte das Team um Thomale die Theorie, dass sich in Kagome-Metallen eine spezielle Art von Supraleitung zeigen könnte. Bei dieser verteilen sich die Cooper-Paare wellenartig in den Untergittern des Materials. Jede „Sternzacke“ beherbergt also unterschiedlich viele Cooper-Paare. Thomales Theorie wurde jetzt in einem internationalen Experiment erstmals direkt bestätigt, was weltweit für Aufsehen sorgte. Damit wurde die bisherige Annahme widerlegt, dass es bei den Kagome-Metallen ausschließlich gleichmäßig verteilte Cooper-Paare geben könne. Cooper-Paare entstehen bei sehr tiefen Temperaturen aus jeweils zwei Elektronen und sind eine Voraussetzung für Supraleitung. Sie können im Kollektiv einen Quantenzustand bilden und sich widerstandsfrei durch den Supraleiter bewegen.
„Zunächst haben wir uns bei der Erforschung von Kagome-Metallen wie Kalium-Vanadium-Antimon (KV3Sb5) auf die Quanteneffekte der einzelnen Elektronen konzentriert, die zwar nicht supraleitend, aber auch wellenartig im Material verteilt sein können. Nachdem vor zwei Jahren mit dem Nachweis von Ladungsdichtewellen unsere erste Theorie zum außergewöhnlichen Verhalten von Elektronen auf Kagome-Gittern experimentell bestätigt wurde, haben wir uns auf die Suche nach weiteren Quanteneffekten bei ultratiefen Temperaturen begeben. So haben wir den Kagome-Supraleiter gefunden. Doch die weltweite Physik steht bei der Kagome-Forschung erst am Anfang“, erklärt Thomale.
„Die Quantenphysik kennt den Effekt der Paar-Dichte-Welle. Das ist eine spezielle Form eines supraleitenden Kondensats. Wenn Wasserdampf abkühlt, kondensiert er, wird also flüssig. Das hat jeder beim Kochen schon erlebt und das ist im Kagome-Metall ganz ähnlich: Bei ultratiefen Temperaturen um minus 193 Grad Celsius ordnen sich die Elektronen zunächst neu und verteilen sich wellenartig im Material, was seit dem Nachweis der Ladungsdichtewellen bekannt ist. Wird die Temperatur bis fast an den absoluten Nullpunkt – auf minus 272 Grad Celsius – reduziert, finden sich die Elektronen paarweise zusammen. Diese Cooper-Paare kondensieren zu einer Quantenflüssigkeit, die sich ebenfalls wellenartig im Material verteilt und widerstandsfreie Supraleitung möglich macht. Die Wellenform wird also vererbt“, erläutert Doktorand Hendrik Hohmann, der gemeinsam mit seinem Kollegen Matteo Dürrnagel maßgeblich an der theoretischen Arbeit beteiligt war.
Sowohl Supraleitung als auch die räumliche Verteilung von Cooper-Paaren konnten in der bisherigen Forschung zu Kagome-Metallen bereits realisiert werden. Das erstaunliche Ergebnis der neuen Forschungen ist jedoch, dass die Cooper-Paare innerhalb der atomaren Untergitter des Materials nicht nur gleichmäßig, sondern wellenförmig verteilt sein können – als „Untergitter-Modulierte-Supraleitung“ bezeichnet. „Schlussendlich gibt es unsere Paar-Dichte-Wellen in KV3Sb5, weil sich die Elektronen schon bei Temperaturen, die achtzig Grad Celsius über der Supraleitung liegen, wellenartig verteilt haben. Diese Kombination von Quanteneffekten hat viel Potenzial“, ergänzt Dürrnagel.
Das Experiment, das die wellenartig im Kagome-Metall verteilten Cooper-Paare erstmals direkt nachweisen konnte, wurde von Jia-Xin Yin an der chinesischen Southern University of Science and Technology in Shenzhen entwickelt. Dafür wurde ein Rastertunnelmikroskop mit einer supraleitenden Spitze ausgestattet, die die Cooper-Paare selbst detektieren kann. Das Prinzip dieser Mikroskop-Spitze, deren Ende nur aus einem einzelnen Atom besteht, basiert auf dem nobelpreisgekrönten Josephson-Effekt. Dabei fließt ein supraleitender Strom zwischen der Mikroskop-Spitze und der Probe, sodass die Verteilung der Cooper-Paare unmittelbar gemessen werden kann.
„Die aktuellen Forschungsergebnisse sind ein weiterer Meilenstein auf dem Weg zu energieeffizienten Quantenbauelementen. Zurzeit ist das zwar noch Zukunftsmusik, weil wir die Quanteneffekte nur auf atomarem Level sehen können. Sobald die Kagome-Supraleitung aber auf makroskopischer Ebene funktioniert, werden solche supraleitenden Bauteile möglich. Das treibt unsere Grundlagenforschung an“, sagt Thomale. Jetzt suchen die Forschenden nach Kagome-Metallen, bei denen die Cooper-Paare räumlich moduliert sind, ohne dass vor der Supraleitung Ladungsdichtewellen entstehen. Vielversprechende Kandidaten werden bereits analysiert.
An supraleitenden elektronischen Bauteilen wird noch intensiv geforscht. Erste supraleitende Dioden wurden im Labor bereits realisiert, sie sind aber auf eine Kombination von verschiedenen supraleitenden Materialien angewiesen. Die speziellen Kagome-Supraleiter hingegen, in denen die Cooper-Paare räumlich moduliert sind, wirken selber als Diode. Das macht sie attraktiv für die supraleitende Elektronik und verlustfreie Schaltungen.
ct.qmat / JOL
Weitere Infos
- Originalveröffentlichungen
H. Deng et al.: Chiral kagome superconductivity modulations with residual Fermi arcs, Nature 632, 775 (2024); DOI: 10.1038/s41586-024-07798-y - Theoretische Physik I, Universität Würzburg
- Würzburg-Dresdner Exzellenzcluster ct.qmat – Complexity and Topology in Quantum Matter, Universität Würzburg