Katalyse unter der Lupe
Kombination aus Rasterkraftmikroskopie und theoretischer Analyse liefert neue Einblicke in Oberflächenreaktionen.
Es ist ein langersehntes Ziel der Chemie, strukturelle Veränderungen von Molekülen während chemischer Reaktionen nachzuverfolgen und direkt zu beobachten. Aufgrund ihrer kurzen Lebensdauer ist es besonders schwierig, reaktive Zwischenprodukte zu identifizieren und zu charakterisieren. Durch die Kenntnis ihrer Strukturen lassen sich jedoch wertvolle Einblicke in Reaktionsmechanismen gewinnen, was sowohl für die chemische Industrie als auch in darüber hinausgehenden Gebieten – wie Materialwissenschaften, Nanotechnologie, Biologie und Medizin – von großer Bedeutung ist. Nun hat ein internationales Forscherteam unter der Leitung von Felix R. Fischer, Michael F. Crommie (University of California, Berkeley und Lawrence Berkeley National Laboratory) und Angel Rubio (Max-
Abb.: Identifikation von Reaktanten, Intermediaten, und Produkten einer Reaktionskaskade aus bimolekularer Endiin-Kupplung und Zyklisierung an einer Silberoberfläche mittels Rasterkraftmikroskopie (Bild: A. Riss et al.)
Chemische Umwandlungen an der Grenzfläche zwischen fester und flüssiger beziehungsweise fester und gasförmiger Phase von Stoffen bilden das Herzstück von Schlüsselprozessen der Herstellung von Chemikalien in industriellem Maßstab. Der mikroskopische Mechanismus dieser oberflächenkatalysierten organischen Reaktion stellt für die moderne heterogene Katalyse und ihre Anwendung auf großtechnische chemische Verfahren eine große Herausforderung dar. Konkurrierende Reaktionspfade, die zu einer Vielzahl von reaktiven Zwischenprodukten sowie zu unerwünschten Nebenprodukten führen, erschweren oft die Untersuchung der zugrunde liegenden Reaktionsmechanismen industriell angewandter chemischer Reaktionen, wie beispielsweise der Umwandlung organischer Rohstoffe in komplexe, hochwertige Chemikalien an der Oberfläche eines heterogenen Katalysatorbetts. Die Identifizierung der Struktur kurzlebiger reaktiver Zwischenprodukte gestaltet sich hierbei aufgrund ihrer geringen Konzentration im Reaktionsgemisch besonders schwierig.
In der aktuellen Studie haben die Forscher die chemischen Strukturen verschiedener Zwischenschritte einer mehrstufigen Reaktionskaskade von Endiin-
„Dies ist ein großer Schritt für die chemische Synthese“, ergänzte Angel Rubio, ebenfalls einer der führenden Autoren sowie Direktor am Max-
„Die ergiebige Zusammenarbeit zwischen Theorie und Experiment ermöglichte es uns, die mikroskopischen Triebkräfte zu identifizieren, welche die Reaktionskinetik bestimmen“, sagte Alexander Riss, Erstautor der Studie. Dieses fundamentale Verständnis, das durch das Zusammenspiel experimenteller Messungen auf Einzelmolekülniveau und moderner theoretischer Berechnungen auf Hochleistungsrechnern erreicht wurde, stellt einen grundlegenden Meilenstein in der Analyse chemischer Reaktionen dar. Durch Einzelmolekülmessungen war es in dieser Arbeit möglich, Beschränkungen konventioneller spektroskopischer Verfahren, die über Ensembles verschiedener Moleküle mitteln würden, zu umgehen und so ein atomares Bild der Reaktionsmechanismen, der treibenden Kräfte chemischer Reaktionen, und der Reaktionskinetik darzustellen. Diese neuen Erkenntnisse liefern bisher unerforschte Ansatzpunkte für die Entwicklung und Optimierung heterogener Katalysesysteme, für die Entwicklung neuartiger Syntheseverfahren in der kohlenstoffbasierten Nanotechnologie, sowie für Anwendungen in der Biochemie und den Materialwissenschaften.
MPSD / DE