22.12.2021

Kettenreaktion nach Strahlungsexposition

Direkte Auswirkungen ionisierender Strahlung auf Biomoleküle wohl größer als gedacht.

Wenn Zellen ionisierender Strahlung ausgesetzt sind, kommt es möglicherweise zu mehr zerstörerischen Kettenreaktionen als bislang angenommen. Ein internationales Team um Forscher des Max-Planck-Instituts für Kernphysik hat in organischen Molekülen erstmals den inter­molekularen Coulomb­zerfall beobachtet, der durch ionisierende Strahlung wie etwa aus Radio­aktivität oder aus dem Weltall ausgelöst wird. Der Effekt schädigt zwei benachbarte Moleküle und führt letztlich zum Bruch von Bindungen. Die Erkenntnis verbessert nicht nur das Verständnis von Strahlen­schäden, sondern könnte auch bei der Suche nach wirkungs­volleren Substanzen helfen, die eine Strahlen­therapie unterstützen.

 

Abb.: Ein Elektron trifft ein Benzol­molekül, das dadurch angeregt wird und...
Abb.: Ein Elektron trifft ein Benzol­molekül, das dadurch angeregt wird und ein Elektron verliert. Anregungs­energie geht auf das Partner­molekül über, sodass dieses ebenfalls ein Elektron verliert. Es folgt die Coulomb­explosion. (Bild: MPIK)

Manchmal kann ein radioaktiver Schaden gar nicht groß genug sein – wenn es nämlich darum geht, Tumorgewebe mit ionisierender Strahlung zu zerstören. In der Strahlen­therapie kommen daher Substanzen zum Einsatz, die den Strahlen­schaden im Tumorgewebe gezielt verstärken. „Der intermolekulare Coulombzerfall, den wir gefunden haben, könnte helfen, solche Sensibilisatoren wirkungsvoller zu machen“, sagt Alexander Dorn, Forschungs­gruppen­leiter in der Abteilung Pfeifer am MPIK, der an der aktuellen Studie maßgeblich beteiligt war. Die Beobachtung seines Teams könnte aber auch das Verständnis verbessern, wie künstliche oder natürliche ionisierende Strahlung das Erbgut von gesundem Gewebe schädigt.

Die DNA-Doppelhelix des Genoms ähnelt einer Strickleiter mit Sprossen aus Nukleinbasen-Paaren. „Da Experimente mit den freien Nukleinbasen schwierig sind, haben wir als Modellsystem zunächst Paare von Benzolmolekülen untersucht“, erklärt Alexander Dorn. Diese Kohlen­wasser­stoff­ringe sind auf ähnliche Weise miteinander verbunden wie die in der DNA-Kette übereinander­gestapelten Nukleinbasen. Die Benzolpaare beschossen die Forscher mit Elektronen und imitierten so gewissermaßen die radioaktive Strahlung. Wenn dabei ein Elektron ein Benzolmolekül traf, wurde dieses ionisiert und mit Energie aufgeladen. Nun beobachtete das Team, dass das Molekül einen Teil dieser Energie mit hoher Wahrscheinlichkeit an sein Partner­molekül abgab. Dieser Energieschub reichte, um auch das zweite Molekül zu ionisieren, so dass nun beide Moleküle positiv geladen waren. Das ging natürlich nicht lange gut: Die beiden Molekülionen stießen sich gegenseitig ab und flogen in einer Coulomb­explosion auseinander.

Bislang ging man davon aus, dass ionisierende Strahlung Biomoleküle vor allem indirekt schädigt. Die energiereiche Strahlung ionisiert nämlich auch das Wasser, aus dem eine Zelle größtenteils besteht und das Biomoleküle wie etwa die DNA umgibt. Die ionisierten Wassermoleküle, vor allem Hydroxid­ionen, greifen dann die DNA an. Und wenn ein Elektron der Betastrahlung oder ein Gammaquant ein DNA-Molekül mal direkt treffe, werde der Energieüberschuss stets durch Prozesse im Molekül selbst abgebaut, so dass dieses intakt bleibe – so die bisherige Annahme. Auch die schwachen Bindungen zwischen verschiedenen Molekülen oder verschiedenen Molekül­teilen, wie sie in der DNA oder auch in Proteinen vorliegen, sollten davon jedenfalls nicht betroffen sein. Dass radioaktive Strahlung solche Bindungen sehr wohl aufbrechen kann, beobachteten die Wissenschaftler mit ihrem Reaktionsmikroskop. Damit können sie nicht nur die beiden auseinanderfliegenden Benzolmoleküle auffangen und deren Energie messen, sondern auch die emittierten Elektronen charakterisieren.

„Wie sich der intermolekulare Coulombzerfall auf den DNA-Strang auswirkt, ist noch nicht klar“, sagt Alexander Dorn. Wenn ein einzelner Strang in der DNA-Strickleiter bricht, dürfte das nicht gravierend sein. Doch der beobachtete Mechanismus setzt auch mehrere Elektronen frei, die weitere Molekül­paare sprengen können. Und wenn in unmittelbarer Nachbarschaft beide Stränge der DNA kaputtgehen, kann das sehr wohl fatale Folgen haben.

Um die Wirkung der radioaktiven Strahlung auf das Erbgut besser abschätzen zu können, wird sein Team im Reaktionsmikroskop nun auch Paare von Nukleinbasen mit Elektronen beschießen. „Das ist experimentell anspruchsvoll, weil wir die Nukleinbasen erhitzen müssen, um sie zu verdampfen“, erklärt Dorn. „Aber bei zu großer Hitze werden sie zerstört. “ Darüber hinaus können Nuklearmediziner die Spur zu effektiveren Sensibilisatoren verfolgen, die das Team mit dem Nachweis des inter­molekularen Coulomb­zerfalls gelegt hat. Der neue Mechanismus könnte also für beide Fälle von Strahlenschäden relevant sein: solche, die möglichst vermieden werden müssen, und solche, die möglichst groß sein sollen.

MPIK / DE

 

Weitere Infos

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen