Klassische Verschränkung
Mit Hilfe der Fisher-Information lassen sich auch große atomare Systeme quantenmetrologisch auswerten.
Ein Bleistift, der auf der Spitze steht, wird durch eine noch so kleine Störung in die eine oder die andere Richtung kippen. In der Quantenwelt ist es prinzipiell möglich, dass die Teilchen eines Systems gleichzeitig nach links und nach rechts fallen. Wissenschaftler des Kirchhoff-Instituts für Physik der Universität Heidelberg haben nun eine neue und allgemeine Methode entwickelt, die den Nachweis der Verschränkung für beliebige Zustände von großen atomaren Systemen erlaubt.
Abb.: Mit Hilfe einer solchen Bloch-Kugel kann man quantenmechanische Systeme charakterisieren. (Bild: H. Strobel et al.)
In seinen Experimenten nutzte das Team unter der Leitung von Markus Oberthaler den klassisch instabilen Zustand eines ultrakalten Bose-Einstein-Kondensats. Dabei handelt es sich um den extremen Aggregatzustand eines Systems nicht unterscheidbarer Teilchen, die sich überwiegend im selben quantenmechanischen Zustand befinden. Die Heidelberger Forscher verwendeten ein Gas aus rund 500 Atomen mit Temperaturen von 0,000.000.01 Kelvin über dem absoluten Temperaturnullpunkt.
Nach kurzer Zeit entwickelt sich daraus ein System mit hoher Verschränkung. Um diesen Zustand mit seinen besonderen quantenmechanischen Eigenschaften experimentell nachweisen zu können, musste das Team eine Vielzahl dieser atomaren Systeme unter gleichen Bedingungen bei jeweils verschiedenen Einstellungen des Laboraufbaus realisieren. „Dieses Vorgehen erforderte Messungen über mehrere Wochen, in denen die Schwankungen des von uns eingesetzten Magnetfelds unter ein Zehntausendstel des Erdmagnetfelds reduziert werden mussten“, erläutert der Erstautor der neuen Studie, Helmut Strobel.
Eine zweite Herausforderung stellte die richtige Analyse der Messungen dar. Dazu mussten die Forscher neue statistische Konzepte entwickeln. Ziel war es, aus den Daten der Messungen den für die Quantenmetrologie relevanten Informationsgehalt herauszufiltern. Diese sogenannte Fisher-Information, die nach dem Genetiker und Statistiker Ronald A. Fisher benannt ist, quantifiziert auf eindeutige und allgemeine Weise die sensitive Abhängigkeit des jeweiligen quantenmechanischen Zustands von den metrologisch relevanten Messgrößen. Bei einem atomaren Bose-Einstein-Kondensat dieser Größe ist dies mit herkömmlichen Verfahren nicht möglich, wie Markus Oberthaler erläutert. Die neue Methode ist darüber hinaus auf noch größere Systeme anwendbar. „Wir können damit beliebige experimentelle Quantenzustände daraufhin untersuchen, ob sie sich für präzisere Messungen eignen als klassisch möglich“, so Oberthaler. „Dabei handelt es sich um ein hochaktuelles Thema auf dem Gebiet der Quantenmetrologie.“
Markus Oberthaler leitet am Kirchhoff-Institut für Physik die Arbeitsgruppe Synthetische Quantensysteme. An den Forschungsarbeiten waren Wissenschaftler des Forschungszentrums Quantum Science and Technology in Arcetri (QSTAR) und des European Laboratory for Non-Linear Spectroscopy (LENS) beteiligt.
U. Heidelberg / DE