Knorpel aus dem 3D-Drucker
Optische Messverfahren sollen Druckprozesse optimieren helfen.
Neue Knorpel für Arthrose-Geschädigte, 3D-Modelle von menschlichem Gewebe oder Knochenersatz für Tumorpatienten sind durch neue 3D-Druck-Technologien individuell anpassbar. An die Biofabrikation richten sich derzeit große Hoffnungen. Schon heute produzieren Spezialisten der regenerativen Medizin individualisierte Implantate und orthopädische Hilfsmittel. Und für die Zukunft erwarten sie vielfältige neue Einsatzmöglichkeiten, unter anderem in der Gewebezüchtung.
Abb.: Vorläuferzellen des Stütz- und Bindegewebes auf einem Trägermaterial aus biologisch abbaubarem Kunststoff. (Bild: UK Würzburg)
In klassischen Verfahren der Gewebezüchtung werden 3D-Gerüste mit Zellen besiedelt, um daraus Ersatz für irreparabel geschädigtes Gewebe reifen zu lassen. Im Unterschied dazu liefert die Biofabrikation mit Hilfe neuester 3D-Drucktechniken aus Zellen und Gerüstmaterialien Strukturen, die dem natürlichen Gewebe im Aufbau nachgeahmt sind. Dadurch soll eine schnellere und bessere Ausbildung von funktionalem menschlichem Gewebe erreicht werden.
„Die Biofabrikation steckt als Forschungsfeld noch in den Kinderschuhen. Dem hohen Potenzial und ersten Erfolgen mit einfachen Strukturen stehen grundlegende Herausforderungen gegenüber“, sagt Jürgen Groll. Dazu gehört beispielsweise die Tatsache, dass derzeit keine Methoden zur Charakterisierung der Strukturen sowohl direkt während des Drucks als auch während der Gewebereifung existieren. Jürgen Groll, Professor für Funktionswerkstoffe der Medizin und der Zahnheilkunde der Universitätsklinik Würzburg sucht In dem Forschungsprojekt „PhotonControl“ in den kommenden zwei Jahren gemeinsam mit Gereon Hüttmann vom Institut für Biomedizinische Optik der Universität Lübeck nach einem geeigneten Verfahren zur Qualitätskontrolle für künstliche Gewebeimplantate.
„Die Qualitätskontrolle während des Druckprozesses bedeutet eine große Herausforderung“, erklärt Groll. Schließlich müssten diese Messungen zerstörungsfrei ablaufen und auf den Einsatz spezieller Marker verzichten. „Wir können beispielsweise keine chemischen Farbstoffe verwenden, da diese die Gewebereifung der gedruckten Konstrukte beeinflussen können“, so Groll. Da die Druckzeiten bei der Biofabrikation zwischen wenigen Minuten bei sehr einfachen Konstrukten und teilweise Stunden liegen, und die Strukturen vergleichsweise groß sind, seien die Hauptanforderungen an die Messmethoden nicht kurze Messzeiten oder hohe Auflösung. Vielmehr gehe es darum, die relevanten chemischen, biochemischen und morphologischen Informationen zu erfassen. Wegen der teilweise langen Druckzeiten sei außerdem eine Charakterisierung bereits während des Druckens wünschenswert.
Zwei Techniken sind nach Ansicht der Wissenschaftler geeignet, diesen Anforderungskatalog zu erfüllen: die optische Kohärenztomographie (OCT) und die Raman-Spektroskopie. Beide Verfahren kommen ohne Farbstoffe als Marker aus und sind nicht invasiv, das heißt, sie schädigen das Gewebe nicht. In ihren Eigenschaften ergänzen sie sich gut: OCT ermöglicht eine strukturelle Bildgebung in Echtzeit und kann mechanische Eigenschaften quantitativ messen; Raman-Spektroskopie liefert molekulare Informationen zur chemischen und biochemischen Charakterisierung dreidimensionaler Gewebestrukturen.
Ziel des neuen Forschungsprojekts ist die grundlegende Erforschung der Kombination der optischen Verfahren OCT und Raman zur Inprozesskontrolle beim 3D-Druck von Gewebemodellen und Gewebeimplantaten. Dafür werden die beteiligten Forscher die von ihnen 3D-gedruckten Thermoplaste und Hydrogele zunächst mit klassischen Methoden und anschließend mittels OCT und Raman untersuchen. Die Ergebnisse dieser Arbeit könnten in ein thematisch weiterführendes Verbundprojekt münden, in dessen Mittelpunkt die Umsetzung in eine Systemlösung aus optischen Messverfahren wie OCT und Raman und 3D-Drucktechnologie steht. Damit soll es möglich sein, Druckprozesse zu steuern, regeln und überwachen sowie die lebenden Zellen in diesen Produkten zu kontrollieren.
U. Würzburg / JOL