Konzentrierte Konversion
Neuartige photo-elektrochemische Zelle kann UV-Strahlung bei hohen Temperaturen in chemische Energie konvertieren.
Pflanzen können Sonnenlicht auffangen und chemisch speichern. Dieses Kunststück auf großtechnischer Skala nachzumachen, gelingt uns heute aber noch nicht besonders gut. Photovoltaik wandelt das Licht direkt in Strom um – aber bei hohen Temperaturen nimmt der Wirkungsgrad konventioneller Solarzellen deutlich ab. Wenn man den Strom zur Gewinnung von Wasserstoff nutzt, kann man die Energie chemisch speichern, doch die Effizienz dieses Prozesses ist begrenzt.
Abb.: Photochemische Zelle: Licht erzeugt freie Ladungsträger, Sauerstoff (blau) wird durch die Membran gepumpt. (Bild: TU Wien)
An der TU Wien haben Forscher nun ein neues Konzept entwickelt: Durch die Auswahl ganz spezieller Materialien gelang es, Hochtemperatur-
Schon als Student hatte Georg Brunauer immer wieder darüber nachgedacht, wie man Photovoltaik und elektrochemische Speicherung kombinieren könnte. Allerdings müsste ein solches System bei hohen Temperaturen funktionieren. „Dann könnte man nämlich das Licht der Sonne mit Spiegeln konzentrieren und große Anlagen mit hohem Wirkungsgrad bauen“, sagt Brunauer. Gewöhnliche Solarzellen funktionieren allerdings nur bis etwa 100 Grad Celsius gut – in einem Solarkonzentrator-
Bei der Arbeit an seiner Dissertation gelang es Brunauer dann, einen Lösungsansatz für dieses Problem umzusetzen – und zwar mit einer ungewöhnlichen Wahl von Materialien. Anstatt silizium-
„Unsere Zelle besteht aus zwei verschiedenen Teilen – nämlich aus einem oberen photoelektrischen und einen unteren elektrochemischen Teil“, sagt Georg Brunauer. „In der oberen Schicht werden durch Beleuchtung freie Ladungsträger erzeugt, genau wie in einer gewöhnlichen Solarzelle.“ Die Elektronen werden allerdings sofort wegtransportiert und auf die untere Seite der elektrochemischen Zelle geleitet. Das führt dazu, dass Sauerstoffatome dort negativ aufgeladen werden und dann durch die untere Schicht der Zelle hindurchwandern können.
„Das ist der entscheidende photoelektrochemische Schritt, der in weiterer Folge dann die Grundlage für Wasserzerlegung und Wasserstoffproduktion sein soll“, erklärt Brunauer. Die Vorstufe dazu – eine mit UV-Licht angetriebene Sauerstoff-
Damit ist die Forschung zur photo-
TU Wien / DE