02.09.2022

Kraftketten in granularer Materie aufspüren

Maschinelle Lernmethode liefert gute Vorhersage, wo sich Kraftketten ausbilden.

Granulares Material ist überall um uns herum: Beispiele sind Sand, Reis, Nüsse, Kaffee und sogar Schnee. Diese Materialien bestehen aus festen Teilchen, deren Zustand durch mechanische Einflüsse bestimmt wird: Durch Schütteln entstehen „granulare Gase“, während man durch Komprimieren „granulare Feststoffe“ erhält. Ein ungewöhnliches Merkmal solcher Festkörper ist, dass sich die Kräfte innerhalb des Materials auf im Wesentlichen linearen Bahnen konzentrieren, die als Kraftketten bezeichnet werden und deren Form der eines Blitzes ähnelt.

 

Abb.: Peter Sollich und sein Team untersuchen die Ausbildung von Kraftketten in...
Abb.: Peter Sollich und sein Team untersuchen die Ausbildung von Kraftketten in granularer Materie. (Bild: CM / U. Göttingen)

Wo sich Kraftketten bilden, hängt auf komplizierte Weise davon ab, wie die einzelnen Teilchen interagieren. Daher ist es schwierig, vorherzusagen, wo sich Kraftketten bilden werden. Durch die Kombination von Computer­simulationen und künstlicher Intelligenz haben Forscher des Instituts für theoretische Physik der Universität Göttingen und der Universität Gent ein neuartiges Werkzeug entwickelt. Damit können sie vorhersagen, wo Kraftketten in granularer Materie entstehen; die Methode lässt sich hierbei unabhängig davon anwenden, ob Reibung zwischen den Teilchen wichtig ist oder nicht. Der Ansatz verwendet eine maschinelle Lernmethode, die als Graph Neural Network (GNN) bekannt ist. Solche Netzwerke können anhand von Daten zu Beispielsystemen trainiert werden, um dann die Position von Kraftketten vorherzusagen, die bei der Verformung eines granularen Systems entstehen.

„Das Verständnis von Kraftketten ist entscheidend, um die mechanischen Eigenschaften und die Transport­eigenschaften von granularen Festkörpern zu beschreiben“, sagt Rituparno Mandal vom Institut für theoretische Physik der Universität Göttingen. Dies gilt für eine Vielzahl von Situationen: zum Beispiel wenn sich Schall in einem granularen Material ausbreitet oder wenn Sand oder eine Packung Kaffeebohnen auf Verformung durch Druck oder Bewegung reagieren. „Eine aktuelle Studie legt sogar nahe, dass Lebewesen wie Ameisen die Wirkung von Kraftkettennetzwerken ausnutzen, wenn sie Erdkörner für einen effizienten Tunnelaushub entfernen.“

„Wir haben mit verschiedenen, auf maschinellem Lernen basierenden, Werkzeugen experimentiert und festgestellt, dass ein trainiertes GNN bemerkenswert gut aus Trainingsdaten verallgemeinern kann, so dass es in der Lage ist, Kraftketten in neuen unverformten Proben vorherzusagen“, sagt Mandal. „Wir waren fasziniert davon, wie robust die Methode ist: Sie funktioniert außergewöhnlich gut für viele Arten von computer­generierten granularen Materialien. Wir planen derzeit, diese Methode auf experimentelle Systeme im Labor auszuweiten“, fügt Corneel Casert, Erstautor von der Universität Gent, hinzu.

Peter Sollich vom Institut für theoretische Physik der Universität Göttingen, erklärt: „Die Effizienz dieser neuen Methode ist für verschiedene Szenarien mit unterschiedlicher System­größe, Partikeldichte und Zusammen­setzung der verschiedenen Partikeltypen überraschend hoch. Sie wird nützlich sein, um Kraftketten für viele Arten granularer Materie und Systemen zu verstehen.“

U. Göttingen / DE

 

Weitere Infos

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Photo
14.09.2023 • NachrichtForschung

Knick im Jet

Verbogener Jet aus supermassereichem schwarzem Loch vermutlich auf Präzession der Jet-Quelle zurückzuführen.

Themen