Kristallwachstum in Blockbauweise
Schnelles, nichtklassisches Kristallwachstum dank vorgefertigter Bauteile in Nanotropfen.
Wie wachsen Kristalle? Das klassische Lehrbuchwissen sagt: Schicht für Schicht verbreiten sich Atome beziehungsweise Moleküle auf einer bestehenden Kristallfläche. Die Arbeitsgruppe Physikalische Chemie an der Universität Konstanz hat für Glutaminsäure eine Vorstufe dieses Kristallwachstums beobachten können, die diesem klassischen Wachstumsprinzip widerspricht.
Abb.: Zeitsequenz über 47 Minuten, die die Abscheidung der flüssigen Vorstufen auf der Oberfläche eines Glutaminsäuremono-
Demnach sind es nicht nur einzelne Atome, die sich an eine existierende Kristallfläche anlagern, sondern Nano-
Aufnahmen des Rasterkraftmikroskops, mit dem in der Arbeitsgruppe von Helmut Cölfen diese Vorstufe gemessen wurde, weisen unter anderem helle Punkte auf, die im Zeitverlauf immer dunkler werden, um schließlich ganz mit der Kristallfläche zu verschmelzen. Das Rasterkraftmikroskop übersetzt Helligkeit in Höhe. Je heller der Punkt, desto höher ist die Komponente, die dann zerfließt, bis sie die Höhe der Kristalloberfläche erreicht hat. Sie bildet nun eine neue Kristallschicht. „Wenn ich für eine neue Schicht Atome oder Moleküle anbringe, brauche ich sehr viele davon. Wenn ich in der Lösung aber bereits Bausteine habe, ist es möglich, mit einem Mal viele Bausteine dahin zu bringen, wo gebaut werden soll“, erklärt Helmut Cölfen das Prinzip.
Dass es diese Nano-Tröpfchen gibt, war vor dem Konstanzer Experiment nicht unbekannt. Ihr Vorhandensein wurde bereits bei Proteinkristallen gefunden – sehr großen Makromolekülen. Glutaminsäure ist dagegen eine einzelne Aminosäure, ein kleines Molekül. Dass es dieses nicht-
Wenn die Glutaminsäure nach diesem Mechanismus der flüssigen Vorstufe wachsen kann, könnte dies auch für andere Moleküle gelten. Helmut Cölfen denkt insbesondere an neue Formulierungen von Wirkstoffen in Medikamenten. Da sich Flüssigkeit schneller auflöst als ein Feststoff, würden derartige Medikamente schneller wirken. Mit dem Experiment der Arbeitsgruppe Cölfen lässt sich außerdem die Geschwindigkeit messen, mit der die Stufen wachsen, und daraus die Bausteine errechnen, die sich in der Flüssigkeit befinden. „Das trägt zum grundlegenden Verständnis von Kristallwachstum bei“, so Cölfen. Auch Abweichungen von erwartetem Kristallwachstum ließen sich damit erklären.
Um die empirische Beobachtung der flüssigen Vorstufe theoretisch beschreiben zu können, müssen Forscher nun neue physikalisch-
U. Konstanz / DE