Kürzester Elektronenpuls erzeugt
Neuer Rekord bei der künstlichen Kontrolle elektrischer Ströme in festen Materialien.
Mit ultraschnellen Laserblitzen hat eine Forschungsgruppe der Universität Rostock und des Max-Planck-Instituts für Festkörperphysik in Stuttgart den bisher kürzesten Elektronenpuls erzeugt und gemessen. Dabei wurden mit Hilfe von Lasern die Elektronen aus einer winzigen Metallspitze herausgelöst, was nur 53 Attosekunden dauerte. Mit dieser Studie stellen die Forschenden einen neuen Geschwindigkeitsrekord bei der künstlichen Kontrolle elektrischer Ströme in festen Materialien auf. Dieser Ansatz eröffnet neue Möglichkeiten für die Verbesserung der Leistung von Elektronik und Informationstechnologien sowie für die Entwicklung neuer wissenschaftlicher Methoden zur Visualisierung von Phänomenen im Mikrokosmos bei ultimativen Geschwindigkeiten.
Was ist die kürzeste mögliche Strömungsdauer von Elektronen aus einer winzigen Metallleitung in einem elektronischen Schaltkreis? Dieser Frage sind ein Forscherteam um Eleftherios Goulielmakis, Leiter der Rostocker Arbeitsgruppe Extreme Photonik und Mitarbeitende des Max-Planck-Instituts für Festkörperphysik in Stuttgart nachgegangen. Bis heute ist der Photoeffekt äußerst schwer zu manipulieren, da das elektrische Feld des Lichts seine Richtung etwa eine Million Milliarden Mal pro Sekunde umdreht. Das macht es extrem schwierig zu kontrollieren, wie und wann es die Elektronen aus der Oberfläche eines Metalls herausreißt.
Um diese Schwierigkeit zu überwinden, nutzten die Wissenschaftler die zuvor von ihnen entwickelte Technologie der Lichtfeldsynthese. Diese ermöglicht es ihnen, einen Lichtblitz auf weniger als eine volle Schwingung seines eigenen Feldes zu verkürzen. Mit solchen Lichtblitzen beschossen die Forscher die Spitze einer winzigen Wolframnadel um Elektronen ins Vakuum zu schleudern. „Mit Lichtpulsen, die lediglich einen einzigen Zyklus des Feldes umfassen, ist es nun möglich, den Elektronen einen genau kontrollierten Kick zu geben, so dass sie innerhalb eines sehr kurzen Zeitintervalls aus der Wolframspitze herausgelöst werden“, erklärt Goulielmakis.
Diese Herausforderung konnte jedoch nur gemeistert werden, nachdem die Wissenschaftler auch einen Weg fanden, die Dauer der erzeugten Pulse zu bestimmen. Dazu entwickelte das Team eine neuartige Kamera, die Schnappschüsse der Elektronen während der ultrakurzen Zeitspanne machen kann, in der sie durch den Laser aus der Nanospitze ins Vakuum befördert werden. „Der Trick bestand darin, einen zweiten, sehr schwachen Lichtblitz zu verwenden“, sagt Hee-Yong Kim. „Dieser zweite Laserblitz kann die Energie des erzeugten Elektronenpulses leicht modifizieren, sodass wir herausfinden können, wie er im Laufe der Zeit aussah“, fügt er hinzu.
„Da moderne Technologien schnell voranschreiten, ist zu erwarten, dass zukünftig mikroskopisch kleine elektronische Schaltkreise entwickelt werden, in denen sich die Elektronen im Vakuum zwischen dicht gepackten Leitungen bewegen, um so Hindernisse zu vermeiden, die sie verlangsamen“, sagt Goulielmakis. „Die Verwendung von Licht, um Elektronen aus diesen Leitungen herauszulösen und zwischen ihnen zu bewegen, könnte die zukünftige Elektronik um das Tausendfache ihrer heutigen Geschwindigkeit beschleunigen“, erklärt er.
Die Forscher sind jedoch der Ansicht, dass ihre neu entwickelte Methodik auch unmittelbar wissenschaftlich genutzt werden kann. „Das Emittieren von Elektronen aus einem Metall innerhalb eines Bruchteils des Zyklus eines Lichtfeldes vereinfacht die Interpretation der Experimente dramatisch und ermöglicht es uns, fortgeschrittene theoretische Methoden zu verwenden, um die Emission von Elektronen in einer Weise zu verstehen, die nie zuvor möglich war“, sagt Thomas Fennel. „Da unsere Elektronenpulse eine hervorragende Auflösung für Schnappschüsse elektronischer und atomarer Bewegungen in Materialien bieten, wollen wir sie zu nutzen, um ein tiefes Verständnis komplexer Materialien zu erlangen und so deren Anwendung für zukünftige Technologien zu erleichtern“, so Goulielmakis.
U. Rostock / JOL