06.06.2012

Kunstmuskel als Schwingungsdämpfer

Elektroaktive Elastomere könnten störende Schwingungen im Auto mindern oder an unzugänglichen Stellen angebrachte Sensoren drahtlos mit Strom versorgen.

Ingenieure des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF in Darmstadt arbeiten an einer neuen Generation von Elastomeren: Sie entwickeln Bauteile, die aktiv auf unerwünschte Schwingungen reagieren und sie dadurch noch wirkungsvoller dämpfen als bislang. Elastomere kommen in der Technik seit Jahrzehnten zum Einsatz, etwa als Schwingungsdämpfer im Maschinenbau oder in Lagerungen für Automotoren. Bislang wirken sie bei Schwingungen und Stößen rein passiv. Effektiver wäre es, die Elastomere würden aktiv auf Vibrationen reagieren und gegensteuern. Ähnlich wie der Tennisspieler bei einem Stoppball seinen Schläger zurückzieht, um den Ball zu verlangsamen, würde ein aktives Elastomer der Vibration gezielt Energie entziehen – indem es exakt im Gegentakt schwingt. Theoretisch ließe sich damit eine Vibration vollständig eliminieren.

Abb.: Das Bild zeigt im Vordergrund die gitterförmige Elektrode und im Hintergrund das Elastomer. (Bild: U. Raapke)

Materialien, die dazu taugen, gibt es bereits. Sie heißen elektroaktive Elastomere. Das sind elastische Stoffe, die ihre Form ändern, wenn man sie einem elektrischen Feld aussetzt. Legt man eine Wechselspannung an, beginnt das Material zu vibrieren. Steuert zudem eine intelligente Elektronik das Elastomer so an, dass es genau im Gegentakt vibriert, kann es die unerwünschten Schwingungen einer Maschine oder eines Motors weitgehend auslöschen. Um zu zeigen, dass das Prinzip funktioniert, haben die Darmstädter Forscher einen Demonstrator entwickelt. Er ist kleiner als eine Zigarettenschachtel und setzt sich aus 40 dünnen Elastomer-Elektroden-Schichten zusammen. Die Experten sprechen von einem Stapelaktor.
Für gewöhnlich bestehen Elektroden aus Metall. Metalle jedoch sind relativ starr, behindern also die Verformung des Elastomers. Die Experten lösten das Problem elegant: „Wir haben die Elektroden mit mikroskopisch kleinen Löchern versehen,“ sagt Jan Hansmann. „Wird das Elastomer durch eine elektrische Spannung verformt, kann es in diese Löcher ausweichen.“ Das Resultat ist ein Aktor, der sich auf Befehl um einige Zehntelmillimeter heben und senken kann – und zwar viele Male pro Sekunde. Um dessen Fähigkeiten zu demonstrieren, stellt der Forscher einen kleinen mechanischen Schwinger auf das Gerät. Wenn er dieses einschaltet, schlägt der Schwinger kräftig aus – der Aktor hat genau seine Resonanzfrequenz getroffen. Umgekehrt kann die Vorrichtung Schwingungen aktiv dämpfen: Wird der Schwinger von Hand angestoßen, kommt er schnell zur Ruhe, wenn der Aktor im Gegentakt vibriert.

Eine mögliche Anwendung für ihren Stapelaktor sehen die LBF-Ingenieure im Fahrzeugbau. „Die Vibrationen des Motors können störend sein“, sagt William Kaal. »Sie werden über die Karosserie in den Innenraum geleitet, wo die Insassen sie zu spüren bekommen.“ Zwar sind Motoren sorgfältig gelagert, aber: „Aktive Elastomere könnten einen Beitrag zur weiteren Reduktion von Schwingungen im Auto leisten“, sagt Kaal.

Die Funktion des Stapelaktors lässt sich aber auch umkehren: Statt Vibrationen zu erzeugen, kann das Gerät Schwingungen aus der Umgebung aufnehmen, um Energie zu erzeugen. Dass das Prinzip funktioniert, haben die Forscher bewiesen: Als sie einen elektromagnetischen Schwinger auf ihren Stapelaktor stellten, wandelte dieser die Vibrationen in Strom um. „Interessant ist das zum Beispiel für eine Überwachung an unzugänglichen Stellen, wo es Vibrationen gibt, aber keinen Stromanschluss“, sagt Jan Hansmann – und nennt als Beispiel Temperatur- und Schwingungssensoren, die Brücken auf ihren Zustand hin überwachen.

Die Stapelaktor-Technologie ist weitgehend ausgereift: „Der Fertigungsprozess ließe sich gut automatisieren. Das ist wichtig für eine industrielle Massenproduktion“, meint Kaal. Allerdings muss sich noch in Dauertests zeigen, wie langzeitbeständig die intelligenten Aktoren sind. Schließlich sollen sie harschen Umgebungen trotzen, wie sie etwa im Motorraum eines Autos zu finden sind.

FhG / PH

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen