Langsame Elektronen mindern Stromausbeute
Neue Wege, um Wirkungsgrad von organischen Solarzellen zu steigern.
Solarzellen auf der Basis organischer Halbleiter können energie- und kostensparend gedruckt werden. Es gibt aber Begrenzungen des Wirkungsgrades, die näher beleuchtet werden müssen. Ein Forschungsteam unter der Leitung von Carsten Deibel an der Technischen Universität Chemnitz hat untersucht, welche Hauptfaktoren für die Leistungsbegrenzung organischer Solarzellen entscheidend sind. Das Team fand unter anderem heraus, dass insbesondere der Transportwiderstand die Leistung organischer Solarzellen stark begrenzt.
Die Bedeutung dieser Ergebnisse für die Entwicklung effizienterer Solarzellen mit hohem Wirkungsgrad zeigt sich insbesondere vor dem Hintergrund der Energiewende. Da organische Halbleiter im Gegensatz zu ihren Silizium-Pendants bereits bei Raumtemperatur mittels Druckverfahren hergestellt werden können, benötigen sie bei vergleichbaren Wirkungsgraden deutlich weniger Energie für die Produktion. Zudem nähern sich neuartige organische Solarzellen unter Laborbedingungen einem Wirkungsgrad von zwanzig Prozent. Damit werden sie zunehmend wettbewerbsfähig. Organische Halbleiter in Solarzellen warten mit einer sehr guten Energiebilanz auf. Allerdings ist die geringe Mobilität der Ladungsträger in diesen Materialien noch eine große technologische Herausforderung. Denn davon sind Leitfähigkeit und Effizienz abhängig. Eine bekannte Herausforderung besteht darin, dass die langsamen Ladungsträger aus der organischen Solarzelle extrahiert werden müssen, bevor eine Rekombination stattfinden kann. Denn nur so kann der Solarstrom auch genutzt werden.
Eine weitere Herausforderung, die erst vor wenigen Jahren von Wissenschaftlerinnen und Wissenschaftlern aus Freiburg und Potsdam für organische Solarzellen beschrieben wurde, ist der Verlust der Photo-Spannung am Punkt der maximalen Leistung. Das liegt an den sich langsam bewegenden Ladungsträgern. Dieser Verlust wird bei einer Alterung organischer Solarzellen ausgeprägter, was einen negativen Einfluss auf den Wirkungsgrad hat. Wie wichtig es ist, diesen Verlustmechanismus, also der Spannungsverlust aufgrund des Transportwiderstands, zu verstehen, wird erst durch die nun von Chemnitzer Forschern vorgelegten Ergebnisse richtig klar.
Die Solarzellen aus einem Gemisch aus Polymeren und „Nicht-Fulleren-Akzeptoren“ genannten Molekülen, wurden auf verschiedene Weisen beschleunigt gealtert. Die beteiligten Forschenden untersuchten diese photovoltaischen Bauteile mit sich gut ergänzenden Methoden. „Für die thermisch beschleunigte Degradation bei hohen Temperaturen konnten wir zeigen, dass die Eigenschaften des Absorbermaterials und der Grenzflächen bemerkenswert stabil bleiben“, sagt Carsten Deibel. Eine Ausnahme ist die alterungsbedingte Bildung von Defektzuständen aufgrund von Veränderungen in der Nanostruktur der photo-aktiven Schicht, die das Team beobachten konnte, so Deibel.
Die Forschungsgruppe fand heraus, dass der damit verbundene Anstieg des Transportwiderstandes der Hauptgrund für den Rückgang des Füllfaktors aufgrund der thermisch beschleunigten Degradation ist. Der Füllfaktor ist einer von drei Faktoren zur Bestimmung der Leistungsfähigkeit einer Solarzelle. Der durch Alterung geringere Füllfaktor mindert also den Wirkungsgrad bei der Energieumwandlung. „Wir brauchten umfangreiche, ergänzende Methoden, um zwischen Veränderungen in der Absorberschicht und der Grenzfläche zu den Elektroden, zwischen Rekombination und Transportwiderstand zu unterscheiden. Daher war die multidisziplinäre Expertise aller Teams von unschätzbarem Wert“, sagt Christopher Wöpke.
„Eines der wichtigsten Ergebnisse unserer Studie ist, dass der Transportwiderstand ein dominanter leistungsbegrenzender Mechanismus in modernen organischen Solarzellen ist, den es zu beheben gilt“, ergänzt Deibel. „Selbst frisch prozessierte Photovoltaik-Bauelemente zeigen diesen Verlust, der bereits durch eine leichte Unterdrückung der Fallenbildung überwunden werden könnte.“ In zukünftigen Studien sollen Wege zur Verringerung der Fallenbildung und zur Erhöhung der Leitfähigkeit in organischen Solarzellen erforscht werden.
TU Chemnitz / JOL