24.06.2013

Laserinterferometer ohne Streulicht

Neues Konzept nutzt Schlupfloch der Unschärferelation, um Empfindlichkeit von Gravitationswellendetektoren zu erhöhen.

Die schwer zu fassenden Gravitationswellen sind die letzte offene Vorhersage von Einsteins Allgemeiner Relativitätstheorie und sollen ein neues Fenster zum All öffnen. Wissenschaftler des Albert-Einstein-Instituts (AEI; Institut für Gravitationsphysik der Leibniz Universität Hannover und Max-Planck-Institut für Gravitationsphysik) in Hannover wollen diese Kräuselungen der Raumzeit mit Detektoren wie GEO600 in Ruthe bei Hannover und dem mit GEO eng kooperierenden amerikanischen Advanced LIGO-Projekt (aLIGO) in den USA aufspüren. Dort arbeiten Laserinterferometer, die winzige, von Gravitationswellen hervorgerufene Längenänderungen registrieren sollen. Die stetige Verbesserung der verwendeten Laser und die Minimierung von Störeinflüssen – etwa Laserstreulicht – sind daher von großer Bedeutung.

Abb.: Komplexes Experiment: Teilansicht des Aufbaus, an dem die AEI-Wissenschaftler ihre neue Quantenmessmethode demonstrierten. (Bild: AEI Hannover)

Nun haben die Physiker erstmals Laserlicht mit maßgeschneiderten Quanteneigenschaften erzeugt. Damit umgehen sie sogar die Heisenbergsche Unschärferelation, die gewöhnlich die Genauigkeit von Messungen begrenzt. „Durch den Einsatz unseres neuartigen Verfahrens lässt sich der Störeinfluss von Streulicht in Gravitationswellendetektoren zukünftig deutlich reduzieren. Damit würde GEO600 dann noch empfindlicher nach Gravitationswellen aus dem All lauschen. Nach einem erfolgreichen Einbau steht die Technik dann dem weltweiten Netz der Gravitationswellenobservatorien zur Verfügung“, sagt Roman Schnabel, Leiter der Arbeitsgruppe für Quanteninterferometrie und gequetschtes Licht am AEI und Wissenschaftler im Forschungsbereich „Quantensensoren“ des Exzellenzclusters QUEST.

Verschränkte Zustände spielen die Hauptrollen im neuen Messverfahren der Hannoveraner Forscher. Nach der Heisenbergschen Unschärferelation lassen sich die quantenmechanischen Eigenschaften prinzipiell nicht gleichzeitig beliebig genau bestimmen. Bei Teilchen gilt das etwa für Ort und Impuls, bei Lichtwellen für Amplitude und Phase.

Bisher verwendeten die AEI-Wissenschaftler bei GEO600 sogenanntes gequetschtes Laserlicht. Dabei verringern die Forscher die Unschärfe in der Phase oder in der Amplitude des Lichts – allerdings auf Kosten einer erhöhten Unschärfe in der anderen Messgröße. So lassen sich jeweils nur entweder die Phase oder die Amplitude sehr genau auslesen. „Für laserbasierte Präzisionsmessungen mithilfe einer einzigen Quanteneigenschaft des Lichts ist ein Quetschlichtlaser das Instrument unserer Wahl. Aber wir haben uns gefragt, ob auch in der anderen Messgröße verwertbare Informationen stecken“, so Schnabel.

Abb.: Auf der Suche nach Gravitationswellen –der Detektor GEO600 südlich von Hannover (Bild: AEI Hannover)

Daher wendeten die Forscher einen weiteren Trick an. Durch die Überlagerung von zwei Quetschlichtlaserstrahlen erzeugten sie zwei neue Laserstrahlen, die quantenmechanisch miteinander verschränkt sind. Einer der Strahlen wird zur Präzisionsmessung verwendet, der andere dient als Referenzstrahl. Durch einen Vergleich zwischen Mess- und Referenzstrahl können die Forscher nun Phase und Amplitude gleichzeitig mit verringerter Unschärfe vermessen und auf diese Weise winzige Schwankungen in beiden Größen registrieren.

„Wir können der Heisenbergschen Unschärferelation nun erstmals ein Schnippchen schlagen, weil wir die Messgrößen relativ zu einem verschränkten Referenzsystem aufnehmen“, erklärt Sebastian Steinlechner, einem Mitglied von Schnabels Arbeitsgruppe im Rahmen des Sonderforschungsbereichs Transregio-7.

Damit unterdrücken die Physiker den störenden Einfluss von Laserstreulicht im Detektor. Schon einzelne Laserphotonen, die auf unerwünschten Umwegen durch den Detektor laufen, können sich untrennbar mit dem Messsignal überlagern und so die Ergebnisse verfälschen. Doch das neue Verfahren erlaubt nun eine genauere und voneinander unabhängige Messung der Phasen- und Amplitudenschwankungen des Laserlichts. Durch diese Aufspaltung in zwei unabhängige Komponenten lässt sich das Streulicht schon während der Messung direkt identifizieren. Betroffene Messdaten werden von der weiteren Auswertung ausgeschlossen – und die Genauigkeit des Endergebnisses steigt.

Der Gravitationswellendetektor GEO600 kann die erste praktische Anwendung für das neuartige Messkonzept der AEI-Wissenschaftler werden. Denn die erforderlichen Technologien sind in einfacherer Form bereits seit zwei Jahren im Detektor eingebaut und haben sich bewährt: Seit 2011 wurde die Messgenauigkeit des interferometrischen Detektors dank der Verwendung gequetschten Laserlichts bereits um rund fünfzig Prozent gesteigert.

Doch wird sich die Empfindlichkeit des Detektors nur dann weiter verbessern lassen, wenn die Physiker dem Streulicht auf die Spur kommen. Die Forscher sind zuversichtlich, diesen störenden Einfluss mit ihrem neuartigen Verfahren zu reduzieren und auf diese Weise die Wahrscheinlichkeit einer ersten direkten Messung der Gravitationswellen zu erhöhen.

MPG / DE

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen