Leiser Fliegen
Forscher messen den Lärm, der durch den Triebwerksstrahl an Landeklappen entsteht.
Triebwerke und Landeklappen sind wesentliche Lärmquellen eines Flugzeugs. Mit einem außergewöhnlichen Versuchsaufbau haben Wissenschaftler des Deutschen Zentrums für Luft- und Raumfahrt jetzt den Lärm, der speziell durch den Triebwerksstrahl an der Flügelklappe entsteht, akustisch messbar gemacht. Einen Triebwerksstrahl zu simulieren, das geht nur mit einem besonderen Modell, einem Triebwerkssimulator. Etwa vierzig Kilogramm schwer, mit einem Durchmesser von dreißig Zentimetern und einer Leistung von etwa 160 Kilowatt haben die Wissenschaftler solch einen Simulator aufwändig verkabelt und verdrahtet, mit Ölpumpe, Computeranschluss und Heizung versorgt und in der Messstrecke des Niedergeschwindigkeitswindkanals Braunschweig getestet.
Mit 10.500 Umdrehungen pro Minute, einer Strahlgeschwindigkeit von 460 Kilometern pro Stunde und einem sichtbaren Kondensstreifen befand sich dieser während der Tests im simulierten Landeanflug. In der Messstrecke wurde direkt hinter dem Triebwerk ein Flugzeugflügel aufgebaut. Eine bunte Signatur auf den Quellkarten zeigte deutlich: Nicht nur das Triebwerk ist laut, auch an der Landeklappe des DLR-Windkanalmodells entsteht Lärm.
Während der Simulator sich mit 21 Bar kalter komprimierter Luft in Bewegung versetzte, verteilte sich das Triebwerksgeräusch mit etwa sechzig Dezibel im ansonsten geräuschlosen Windkanal und wurde von zahlreichen Mikrofonen aufgezeichnet. Mit für den Landeanflug realistischer Geschwindigkeit traf der Triebwerksstrahl auf die ausgefahrene Flügelklappe, die direkt hinter dem Treibwerk zentral in der Messstrecke aufragte. Sofort stieg die Anzeige um einige Dezibel an – zwar im einstelligen Bereich, doch für das bloße Ohr ist diese Lärmsteigerung deutlich hörbar. Schon bei einem Anstieg auf 63 Dezibel scheint es im Windkanal doppelt so laut zu sein.
„Es ist uns gelungen, die Interaktion von Triebwerk und Flügel akustisch zu vermessen“, erklärt Fabian Lange vom DLR-Institut für Aerodynamik und Strömungstechnik erfreut. Dass ein solch signifikanter Unterschied festgestellt werden konnte, ist für die Wissenschaftler ein besonderes Ergebnis, das in die weitere Erforschung der Strahlklappeninteraktion fließen wird. „Jetzt können wir aus dem Gesamtlärm von Triebwerk und Flügelhinterkante die Schallquellen filtern und getrennt voneinander untersuchen“, so Lange.
Möglich wurde das Messergebnis durch die besondere Versuchsanordnung: Mit seinem großen Durchmesser und Nebenstromverhältnis ist das Triebwerk wegweisend für die heutigen immer größeren und immer leistungsstärkeren Triebwerke moderner Passagiermaschinen. Solch ein echtes laufendes Triebwerk im Windkanal zu haben – noch dazu in Kombination mit dem Modell eines gepfeilten Flugzeugflügels – eröffnet den Wissenschaftlern nun erstmalig nach Auswertung der Ergebnisse die Möglichkeit, vorherzusagen, wie sich immer größere Triebwerke aerodynamisch und akustisch auswirken, wie also die großen Antriebsmaschinen und Tragflächen künftig effektiver und leiser konfiguriert werden können.
Parallel dazu fließen die Messergebnisse, die End- und Höhepunkt einer langen Reihe von Untersuchungen im Rahmen des interdisziplinären DLR-Projekts „Konfigurationen und Technologien für das emissions- und lärmarme Kurzstreckenflugzeug“ sind, in die Entwicklung neuer akustischer Triebwerkssimulatoren. So ist geplant, im Folgeprojekt einen akustischen Simulator zu entwickeln, der nicht mehr mit Druckluft, sondern elektrisch betrieben wird. Damit soll dann im Windkanal ein komplettes Halbmodell eines Airbus A320 untersucht werden. Ziel und Vision der Forscher ist es, nicht mehr bloß einzelne Komponenten, sondern das Flugzeug als Ganzes im Windkanal akustisch und aerodynamisch vermessen zu können.
DLR / RK
Weitere Infos