03.09.2009

Lichtblitze kontrollieren einzelne Elektronen in Molekülen

Einem deutsch-niederländischen Physikerteam ist es erstmals gelungen, einzelne Elektronen in einem Vielteilchensystem mithilfe von Laserpulsen zu kontrollieren


Einem deutsch-niederländischen Physikerteam des Max-Planck-Instituts für Quantenoptik (MPQ) in Garching, dem Institute for Atomic and Molecular Physics (AMOLF) in Amsterdam und Chemikern der Ludwig-Maximilians-Universität (LMU) München ist es erstmals gelungen, einzelne Elektronen in einem Vielteilchensystem mithilfe von Laserpulsen zu kontrollieren.

Raubfischen ist das Problem wohlbekannt: In einem Schwarm von kleinen Fischen ist es schwierig eine Beute herauszulösen. Ähnlich verhält es sich im Kosmos von Atomen und Molekülen, deren Verhalten und Eigenschaften von "Schwärmen" von Elektronen beeinflusst werden. Will man hier Kontrolle über einzelne Elektronen in einem Verbund erlangen, benötigt man ultrakurze Lichtpulse von wenigen Femtosekunden Dauer. Physiker des MPQ in Garching und Chemiker der LMU erlangten nun zum ersten Mal die Kontrolle über einzelne, negativ geladene Elementarteilchen in einem Elektronenverbund mithilfe von Licht.

Abb.: Blick in den Mikrokosmos der Kohlenstoffmoleküle: Nachdem Femtosekunden-Laserpulse aus den Kohlenstoffmolekülen einzelne Elektronen herausgelöst haben, entsteht eine charakteristische Ausrichtung der Moleküle. Diese Ausrichtung zeigt die Struktur der Orbitale aus denen die Elektronen aus den Molekül-Ionen austreten. Mit Hilfe eines Detektors lässt sich bestimmen wie die Molekül-Ionen ausgerichtet sind. Die Anzahl der beobachteten Ionen ist farblich dargestellt. Rot und Gelb lassen auf eine hohe Dichte schließen, blau auf eine niedrige. (Bild: Matthias Kling)

Elektronen sind ultraschnelle Zeitgenossen. In Atomen und Molekülen bewegen sie sich innerhalb von Attosekunden. Eine Attosekunde dauert dabei nur ein Milliardstel einer milliardstel Sekunde. Eine gezielte Kontrolle über diese Teilchen kann man mit Lichtpulsen erlangen, die nur wenige Femtosekunden bis hin zu Attosekunden dauern und somit mit ihnen auf der Zeitskala der Elektronenbewegung wechselwirken. Die kurzen Pulse verfügen über starke elektrische und magnetische Felder, die die geladenen Teilchen beeinflussen. Eine Femtosekunde dauert dabei 1000mal länger als eine Attosekunde. Bei Molekülen mit nur einem Elektron, wie etwa beim Deuterium-Molekül-Ion, gestaltet sich diese Kontrolle durch die Lichtblitze noch relativ leicht. Das hat ein Team um Marc Vrakking und Matthias Kling am AMOLF in Amsterdam in Zusammenarbeit mit Ferenc Krausz (LMU und MPQ) bereits im Jahr 2006 gezeigt.

Nun ist es den Wissenschaftlern Kling und Vrakking am MPQ in Zusammenarbeit mit Regina de Vivie-Riedle von der LMU gelungen, die äußeren Elektronen in der Valenzschale des komplexeren Moleküls Kohlenstoffmonoxid (CO) mithilfe starker elektrischer Felder von Laserpulsen zu steuern und zu beobachten. Das Molekül Kohlenstoffmonoxid verfügt über 14 Elektronen. Mit zunehmender Anzahl von Elektronen in einem Molekül wird die Kontrolle über einzelne Elektronen erschwert, da ihre möglichen Energiezustände sehr dicht liegen.

Die Wissenschaftler verwendeten für ihre Versuche Laserpulse im nahen Infrarotbereich (740 nm) und von vier Femtosekunden Dauer. Die Kontrolle wurde experimentell über die asymmetrische Verteilung von C+ bzw. O+ Fragmenten nach dem Aufbrechen der Bindung nachgewiesen. Die Messung von C+ und O+ Fragmenten bedeutet eine dynamische Ladungsverschiebung entlang der Molekülachse in die eine bzw. andere Richtung, gesteuert durch den Laserpuls.

Sobald der Femtosekunden-Laserpuls mit den CO-Molekülen wechselwirkte, löste er ein Elektron aus dem Verbund heraus. Anschließend kollidierte das Elektron wieder mit dem Ion und gab dabei seine Energie ab. Der gesamte Vorgang dauerte etwa 1,7 Femtosekunden. "Bei der Rekollision wurde ein elektronisches Wellenpaket erzeugt, das nun eine gerichtete Bewegung der Elektronen entlang der Molekülachse induziert", berichtet Regina de Vivie-Riedle. "Durch die Anregung und die Wechselwirkung mit dem Rest des intensiven Laserpulses wird diese Elektronenbewegung an die Kernbewegung gekoppelt und liefert einen Beitrag zur beobachteten Asymmetrie", erklärt Kling.

Bei ihren Experimenten konnten die Physiker zudem die Elektronenstruktur und Form der äußersten zwei Orbitale des Kohlenstoffmonoxids durch die Ionisation mit den Lichtpulsen abbilden. Die extreme Kürze der Femtosekunden-Laserpulse ermöglichte es den Wissenschaftlern, die Vorgänge in den äußeren Orbitalen zu erkunden. Dabei zeigte sich, dass die Ionisation der Moleküle winkelabhängig zum Einfall des Lichtpulses stattfand. Diese Beobachtung steht im Einklang mit den theoretischen Berechnungen und liefert ebenfalls einen Beitrag zur beobachteten Asymmetrie. Die Wissenschaftler zeigten auch, dass die Asymmetrie der Ionisation von der Länge der Laserpulse abhängt.

Ludwig-Maximilians-Universität München


Weitere Infos

AL

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen