22.04.2024

Luftschadstoffe einfach nachweisen

Breitband-UV-Dualkamm-Spektrometer ermöglicht empfindliche Messungen von Gasen.

Sonnenlicht hat einen großen Einfluss auf chemische Prozesse. Vor allem seine energiereiche UV-Strahlung wird von allen Materialien stark absorbiert und löst photochemische Reaktionen der in der Luft vorhandenen Stoffe aus. Ein bekanntes Beispiel ist die Bildung von bodennahem Ozon, wenn UV-Licht auf Stickoxide trifft. Ein Forschungsteam um Birgitta Schutze-Bernhardt vom Institut für Experimentalphysik der TU Graz macht sich dieses hohe Reaktionspotenzial nun für eine neue Methode des Umweltmonitorings zunutze: Sie haben das weltweit erste Breitband-UV-Dualkamm-Spektrometer entwickelt, mit dem Luftschadstoffe kontinuierlich gemessen und ihre Reaktion mit der Umgebung in Echtzeit beobachtet werden können. 


Abb.: Das Team um Birgitta Schultze-Bernhardt (2.v.r.) am weltweit ersten...
Abb.: Das Team um Birgitta Schultze-Bernhardt (2.v.r.) am weltweit ersten Breitband-UV-Dualkamm-Spektrometer.
Quelle: H. Lunghammer / NAWI Graz

Dualkamm-Spektrometer gibt es seit knapp zwanzig Jahren. Dabei emittiert eine Quelle Licht in einem breiten Wellenlängenbereich, das in der Darstellung nach seinen optischen Frequenzen geordnet an die Zinken eines Kamms erinnert. Durchdringt dieses Licht eine gasförmige Materialprobe, absorbieren die darin enthaltenen Moleküle einen Teil des Lichts. Die so veränderten Lichtwellenlängen lassen Rückschlüsse auf die Inhaltsstoffe und die optischen Eigenschaften des untersuchten Gases zu.

Das Besondere an dem von Birgitta Schultze-Bernhardt entwickelten Spektrometer ist, dass ein Lasersystem doppelte Lichtimpulse im ultravioletten Spektrum emittiert. Wenn dieses UV-Licht auf Gas-Moleküle trifft, regt es die Moleküle elektronisch an und versetzt diese zusätzlich in Rotationen und Vibrationen – rovibronische Übergänge –, die bei jedem gasförmigen Stoff einzigartig sind. Zudem kombiniert das Breitband-UV-Dualkamm-Spektrometer drei Eigenschaften, die gängige Spektrometer bislang nur in Teilen zu bieten hatten: Erstens eine große Bandbreite des ausgestrahlten UV-Lichts, wodurch sehr viele Informationen über die optischen Eigenschaften der Gasproben mit einer einzelnen Messung gesammelt werden können, zweitens eine hohe spektrale Auflösung, die in Zukunft auch die Untersuchung komplexer Gasgemische wie unserer Erdatmosphäre ermöglichen werden, sowie drittens kurze Messzeiten bei der Untersuchung der Gasproben. 

„Dadurch eignet sich unser Spektrometer für empfindliche Messungen, mit denen sich Änderungen von Gaskonzentrationen und der Verlauf von chemischen Reaktionen sehr genau beobachten lassen“, erläutert Lukas Fürst, Doktorand in der Arbeitsgruppe „Coherent Sensing“ und Erstautor der Publikation.

Entwickelt und getestet haben die Forscher ihr Spektrometer anhand von Formaldehyd. Der Luftschadstoff entsteht beim Verbrennen von fossilen Brennstoffen und Holz ebenso wie in Innenräumen durch Ausdünstungen von in Möbeln verwendeten Klebstoffen. „Mit unserem neuen Spektrometer ließen sich Formaldehydemissionen in der Textil- oder holzverarbeitenden Industrie oder in Städten mit erhöhtem Smogaufkommen in Echtzeit überwachen und so der Schutz von Personal und Umwelt verbessern“, erläutert Birgitta Schultze-Bernhardt. Die Anwendung des Spektrometers kann auch auf andere Luftschadstoffe wie Stickoxide und Ozon und weitere klimarelevante Spurengase übertragen werden. Dadurch erhofft sich das Forschungsteam neue Erkenntnisse über deren Wirken in der Atmosphäre. Darauf aufbauend ließen sich neue Strategien zur Verbesserung der Luftqualität ableiten.

TU Graz / DE

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen