04.09.2019

Magnetischer Parabeltrick

Ungewöhnliches chirales Verhalten in magnetischem Material nachgewiesen.

Digitale Datenspeicher beruhen meist auf magnetischen Phänomenen. Je genauer man diese Phänomene kennt, umso bessere Speicherchips und Festplatten lassen sich bauen. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) und des Helmholtz-Zentrums Berlin (HZB) haben nun eine wichtige Grundlage für künftige Speicher geschaffen: Mit einem originellen Kniff gelang es ihnen, chirale Effekte in einem verbreiteten Magnetmaterial zu erzeugen. Dadurch könnten sich bestimmte Magnetsysteme künftig sehr viel einfacher herstellen lassen als heute. 
 

Abb.: Um magnetische Dünn­schichten herzustellen, nutzen die Forscher eine...
Abb.: Um magnetische Dünn­schichten herzustellen, nutzen die Forscher eine Sputter­anlage. Mit Hilfe litho­graphischer Methoden formen sie anschließend verschiedene Parabel­streifen. (Bild: HZDR / S. Floss)

Auch bei magnetischen Materialien sind chirale Effekte bekannt, und zwar bezüglich ihrer Textur. Damit bezeichnet man die Art und Weise, wie die einzelnen magnetischen Momente im Material angeordnet sind. Oder wie, bildlich gesprochen, die vielen winzigen „Kompass­nadeln“ stehen, aus denen sich ein Magnet zusammensetzt. Unter bestimmten Bedingungen gibt es Texturen, die sich wie Bild und Spiegelbild verhalten – eine links­händige Textur kann nicht mit ihrer rechts­händigen Version zur Deckung gebracht werden.

Das Interessante: „Beide Texturen können sich in ihrem magnetischen Verhalten voneinander unterscheiden“, beschreibt HZDR-Physiker Denys Makarov. „So kann eine rechtshändige Textur weniger Energie besitzen als die linkshändige.“ Die Folge: Da Systeme in der Natur dazu neigen, einen möglichst niedrigen energetischen Zustand zu erreichen, wird die rechtshändige bevorzugt. Technologisch sind solche chiralen Effekte durchaus vielversprechend. Unter anderem könnten sie helfen, künftige Mikro­bauteile wie Sensoren, Schalter und Speicher mit sehr hoher Energie­effizienz zu entwickeln.

„Zwar sind schon seit einiger Zeit Materialen bekannt, in denen sich chirale Effekte nachweisen lassen“, erklärt Oleksii Volkov vom HZDR-Institut für Ionenstrahlphysik und Materialforschung. „Aber dabei handelt es sich um sehr exotische Stoffe, die schwierig herzustellen sind und oft nur bei besonderen Bedingungen funktionieren, etwa bei extremer Kälte.“ Deshalb schlug Makarovs Team einen anderen Weg ein. Es ging von einem gebräuchlichen Magnetmaterial wie Nickel oder Eisen aus und baute aus diesem Material gekrümmte Objekte, zum Beispiel parabelförmige Streifen. Konkret arbeiteten die Fachleute mit einer Legierung namens Permalloy, die aus achtzig Prozent Nickel und zwanzig Prozent Eisen besteht. Aus dünnen Filmen dieser Legierung formten sie mithilfe von Lithographie verschiedene Parabel­streifen etwa von der Größe eines Mikrometers.

Anschließend setzten die Physiker die Proben einem magnetischen Feld aus. Dadurch orientierten sich die magnetischen Momente in den Parabeln, sodass sie in dieselbe Richtung wie das äußere Magnetfeld zeigten. Danach polten die Forscher das äußere Magnetfeld allmählich bis in die entgegengesetzte Richtung um. Über ein hochempfindliches Analyse­verfahren am Elektronen­synchrotron des HZB konnten die Wissenschaftler darstellen, dass die magnetischen Momente in der Parabel zunächst in ihrer ursprünglichen Richtung verharrten. Erst als sie das Magnetfeld erhöhten, sprangen die Magnetmomente um und zeigten in die entgegengesetzte Richtung.

Als Erklärung für dieses verzögerte Umspringen machen die Fachleute chirale Effekte verantwortlich, hervorgerufen durch die Krümmung der Streifen am Scheitelpunkt der Parabelproben. „Theoretiker hatten dieses ungewöhnliche Verhalten zwar schon länger vorgeschlagen, aber das wurde eigentlich eher als ein theoretischer Kniff angesehen“, erläutert Florian Kronast vom Helmholtz-Zentrum Berlin. „Doch wir haben jetzt gezeigt, dass dieser Trick tatsächlich funktioniert. Damit ist es uns gelungen, chirale Effekte in einem wirklich einfachen Material zu finden, und zwar rein durch die geometrische Krümmung der Streifen.“

Dabei stießen die Fachleute auf gleich zwei Überraschungen: Zum einen fiel der Effekt sehr stark aus und kann dadurch zur Beeinflussung etwa von magneto-elektrischen Materialeigenschaften verwendet werden. Zum anderen zeigte er sich bei einem relativ großen Objekt: einer mikro­metergroßen Parabel, die sich mit üblichen Lithographie-Verfahren herstellen lässt. Zuvor hatte die Fachwelt gemutmaßt, dass diese krümmungsbedingten chiralen Effekte allenfalls bei kleineren Objekten von wenigen Nanometer Größe zu beobachten seien.

„Mögliche Anwendungen sehen wir unter anderem für die Verwirklichung von mikroskopischen magnetischen Schaltern und Datenspeichern“, betont Makarov. Manche Zukunftskonzepte sehen nämlich vor, die digitale Information in bestimmten magnetischen Bereichen abzuspeichern, etwa in chiralen Domänenwänden oder Skyrmionen. Die neuen Erkenntnisse könnten helfen, solche Objekte relativ einfach herzustellen – und zwar bei Raumtemperatur und mit gebräuchlichen Materialien. Aber auch neuartige, hochempfindliche Magnetfeld-Sensoren scheinen auf der Basis des neu entdeckten Effekts möglich.

HZDR / DE
 

Weitere Infos

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen