Maßgeschneiderte Petrischalen
Erwin-Schrödinger-Preis ehrt drei Karlsruher Forscher für neues Verfahren dreidimensionaler Zellkultivierung.
Der dreidimensionale Druck ist ein weltweiter Trend, der in immer mehr Anwendungsgebieten zum Einsatz kommt, etwa der Spielzeug- oder Automobilindustrie. Im Mikro- und Nanobereich könnte er vor allem bei der künstlichen Herstellung von biologischem Gewebe („Tissue Engineering“) neue Erkenntnisse bringen, etwa bei der Fertigung von 3D-
Abb.: Dreidimensionale Mikrogerüste für die Kultivierung einzelner Zellen (Aktinfärbung in grün), die durch photochemische Prozesse mit zwei unterschiedlichen Proteinen (rot, magenta) gezielt funktionalisiert wurden. (Bild: B. Richter, KIT)
„Die Stärke der Forschung des KIT zeigt sich nicht nur in den Kompetenzen und der Leistungsfähigkeit der einzelnen Wissenschaftlerin und des einzelnen Wissenschaftlers, sondern auch in ihrer Motivation, gemeinsam und über Fachgrenzen hinweg herausfordernde Forschungsaufgaben zu bewältigen“, sagt der Präsident des KIT, Holger Hanselka. „Der Erwin-
„Jedes Lebewesen besteht aus Zellen, deren Verhalten und Entwicklung auch von den mechanischen und chemischen Eigenschaften ihrer dreidimensionalen Umgebung abhängt“, sagt Martin Bastmeyer vom Zoologischen Institut und vom Institut für Funktionelle Grenzflächen des KIT. „Um Zellen adäquat zu erforschen, ist es daher wichtig, die Prozesse, die in dieser Umgebung ablaufen, möglichst real abzubilden.“ Aktuelle experimentelle Modelle seien jedoch häufig nur für die Zellkultivierung in zweidimensionalen Petrischalen ausgerichtet und könnten die Zellumgebung nicht hinreichend abbilden. Vor allem in Bezug auf Aufbau, Entwicklung und Interaktion zwischen Zellen untereinander sowie deren Umgebung unterschieden sich diese Modelle oft erheblich von dreidimensionalen. „Der Mangel an adäquaten Modellen schränkt die derzeitigen Möglichkeiten in Bezug auf das Tissue Engineering stark ein“, so Bastmeyer.
Um dreidimensionale Mikrogerüste für die Zellkultivierung zu erstellen, wandte sich der Biologe an seinen Kollegen Martin Wegener, Professor am Institut für Angewandte Physik und Abteilungsleiter am Institut für Nanotechnologie. Dieser befasst sich mit der laserbasierten Lithographie: „Bei dieser Technik schreiben wir sozusagen die Gerüste mit einem Laser in einen speziellen Photolack, der nur an den Stellen im Raum aushärtet, die mit dem Laserfokus belichtet wurden“, erklärt der Physiker. Nachdem das Schreiben abgeschlossen ist, entwickeln die Forscher die Strukturen, indem sie die unterbelichteten Bereiche auswaschen. Die gehärteten Teile bleiben und bilden das Gerüst. „Die Strukturen, die wir so erstellen, sind insgesamt kleiner als ein Haar dick ist, also etwa fünfzig Mikrometer“, sagt Wegener.
Abb.: Die Preisträger Christopher Barner-Kowollik, Martin Bastmeyer und Martin Wegener (v.l.n.r.; Bild: Behrendt / Breig / M. Wegener / KIT)
Damit aus diesen Mikrogerüsten Petrischalen für die Zellkultivierung werden, müssen sie mit einer biochemisch aktiven Oberfläche ausgestattet werden. Christopher Barner-
Da die Photolacke von Barner-
Mit diesen 3D-
Der Stifterverband für die Deutsche Wissenschaft und die Helmholtz-
KIT / DE