Mini-Plasmaströme treiben den Sonnenwind an
Solar Orbiter finden bislang unbekanntes Phänomen in koronalen Löchern.
Kleinste Plasmaströme auf der Sonne, die mit Geschwindigkeiten von einigen hundert Kilometern pro Stunde von der Sonnenkorona ins All rasen, könnten der lang gesuchte Antrieb des Sonnenwinds sein. Wie ein Forschungsteam unter Leitung des MPI für Sonnensystemforschung MPS in Göttingen berichtet, findet sich in hochaufgelösten Aufnahmen eines koronalen Lochs, die der ESA-Raumsonde Solar Orbiter im März vergangenen Jahres gelungen sind, eine Vielzahl solcher Mini-Ströme. Koronale Löcher zeigen sich als dunkle Bereiche in Aufnahmen der Korona und gelten als Ausgangsort des Sonnenwinds. Wie die Auswertungen jetzt zeigen, sind die Plasmaströme zwar ein ständig wiederkehrendes und häufiges Phänomen, jeder einzelne reißt jedoch nach kurzer Zeit ab. Das legt den Schluss nahe, dass der Sonnenwind bei näherer Betrachtung nicht als gleichmäßiger Teilchenstrom ausgestoßen wird, sondern zu Beginn und auf kleinen Skalen unregelmäßig fluktuiert.
Die Sonne sendet nicht nur Strahlung ins All, sondern auch einen Strom geladener Teilchen wie etwa Protonen und Elektronen. Dieser Sonnenwind fällt je nach Aktivität der Sonne mal stärker und mal schwächer aus, kommt jedoch nie vollständig zum Erliegen. Die schnellsten Teilchen des Sonnenwinds erreichen Geschwindigkeiten von mehr als fünfhundert Kilometern pro Sekunde. Ihre Quellregionen sind koronale Löcher vorzugsweise in der Nähe der Sonnenpole. Auf Aufnahmen der Sonnenkorona im ultravioletten Licht zeigen sich diese Löcher als dunkle Bereiche. Dort weisen die Feldlinien des Sonnenmagnetfelds nicht bogenförmig zurück zur Sonne, sondern ragen in den interplanetaren Raum. Die Aufnahmen der Raumsonde Solar Orbiter, die das Team ausgewertet hat, zeigen ein solches koronales Loch in bisher unerreichter Detailschärfe und mit schneller Bildabfolge.
Zum Zeitpunkt der Aufnahmen am 30. März 2022 hatte Solar Orbiter den sonnennächsten Punkt seiner stark elliptischen Umlaufbahn um die Sonne erreicht. Aus einem Abstand von nur etwa fünfzig Millionen Kilometern blickte die Sonde aus geringerem Abstand auf die Sonnenkorona, als jeder ihrer Vorgänger. Etwa eine halbe Stunde lang konnte der ExtremevUltraviolet Imager EUI) seinen Blick auf ein koronales Loch in der Nähe des Südpols richten.
„Wie genau es der Sonne gelingt, den Sonnenwind mit hohen Geschwindigkeiten ins All zu beschleunigen, war bisher unklar. Die einzigartigen Aufnahmen von Solar Orbiter bieten uns die Möglichkeit, genauer als je zuvor auf die Quellregionen des Sonnenwinds zu schauen und so diesen Prozess besser als zuvor zu verstehen“, erklärt Lakshmi Pradeep Chitta vom MPS.
In den Aufnahmen findet sich eine Vielzahl kleinster Ströme, die sich mit Geschwindigkeiten von einigen hundert Kilometern pro Sekunde von der Sonne fortbewegen. Sie sind etwa hundert Kilometer breit, von langgezogener oder Y-förmiger Gestalt und recht kurzlebig: nach etwa zwanzig bis hundert Sekunden verblassen sie. Auch die Energie, die jeder einzelne Strom transportiert, ist verhältnismäßig klein: etwa der billionste Teil der Energie, welche die größten Explosionen im Sonnensystem, Strahlungsausbrüche der Sonne der Kategorie X, freisetzen. Deshalb sprechen die Forscher von Piko-Flare-Strömen.
In der Summe dürften die Mini-Ströme dennoch einen Großteil der Energie bereitstellen, die erforderlich ist, die Sonnenwindteilchen auf ihre schnelle Reise durchs All zu schicken. „Die Ströme, die wir nun entdeckt haben, sind zwar klein und treten nur sporadisch auf“, so Chitta, „sie sind aber offenbar ein häufiges Phänomen und in dem betrachteten koronalen Loch geradezu allgegenwärtig.“ Auslöser der Piko-Flare-Ströme könnten lokale Umstrukturierungen des Sonnenmagnetfelds sein. Von größeren, ähnlich geformten Strömen ist bekannt, dass sie dort entstehen, wo sich offene und geschlossene Feldlinien des Sonnenmagnetfelds treffen, neu anordnen und dabei Energie freisetzen.
In bisherigen Vorstellungen ist der Sonnenwind ein über große Zeiträume betrachtet zwar an- und abschwellender, ansonsten aber homogener Teilchenstrom. Diese Sicht scheint nicht länger haltbar zu sein. Wie Solar Orbiters zeitlich und räumlich hochaufgelöste Messungen zeigen, nimmt der Sonnenwind seinen Ursprung offenbar in Gestalt vieler winziger Ströme.
„Je genauer wir mit Solar Orbiter in die Korona der Sonne schauen, desto mehr finden wir, welch entscheidende Rolle kleinste Strukturen und Prozesse für das Verständnis unseres Sterns spielen“, so Hardi Peter vom MPS. Die Forscher halten es für möglich, dass sogar noch kleinere Ströme oder schwächere Strahlungsausbrüche, die auch dem Sonnenspäher der ESA verborgen bleiben, am Werk sind. Sie hoffen nun, im weiteren Verlauf der Mission mehr über die Piko-Flare-Ströme zu lernen. In den kommenden Jahren wird Solar Orbiter die Ebene, in der die Planeten um die Sonne kreisen, mehr und mehr verlassen und so einen immer besseren Blick auf ihre Polregionen – und die dortigen koronalen Löcher – erhalten.
MPS / RK
Weitere Infos
- Originalveröffentlichung
L.P. Chitta et al.: Picoflare jets power the solar wind emerging from a coronal hole on the Sun, Science 381, 867 (2023); DOI: 10.1126/science.ade5801 - Abt. Sonne und Heliosphäre, Max-Planck-Institut für Sonnensystemforschung, Göttingen
- Solar Orbiter, ESA – European Space Agency, Paris, Frankreich