Mit Laserpulsen einzelne Moleküle untersucht
Physikern am MPQ gelingt es, die innere Dynamik einzelner Moleküle mit Femtosekundenpulsen im UV-Bereich zu aufzulösen.
Große Lasersysteme liefern heute ultrakurze und hochintensive Lichtpulse, die es im Prinzip erlauben, Materie und ihre Dynamik auf atomaren Skalen abzubilden, bis hin zu einzelnen Viren oder Molekülen. Aber bisher war es nicht möglich, solche Pulse zielgenau einem einzelnen Molekül zu überlagern. Die Gruppe von Tobias Schätz am Max-Planck-Institut für Quantenoptik (MPQ) hat nun einen Ausweg aus diesem Dilemma gefunden. Die Physiker speicherten die einzelnen Moleküle mit der bewährten Ionenfallentechnik und beschießen sie dann mit hochintensiven Femtosekunden-Pulsen.
Für die Untersuchung der Struktur von biologischen Molekülen, etwa von Proteinen, gibt es bislang keine befriedigende Methode. Das gängige Verfahren basiert auf der Streuung von Röntgenstrahlen an Kristallen und scheitert daran, dass sich die Moleküle nur schwer oder gar nicht in die kristalline Form eines Festkörpers bringen lassen. Für die Abbildung einzelner oder weniger Moleküle reichte bislang die Intensität der zur Verfügung stehenden Lichtquellen nicht aus. Denn bis die Moleküle die hierfür erforderliche Zahl von rund 1013 Photonen aufgesammelt haben, ist ausreichend Zeit vergangen, um sie infolge der dabei erhaltenen Strahlenschäden zu zerstören. Überdies machen es lange Expositionsdauern unmöglich, die hohe Zeitauflösung zu erreichen, die notwendig ist, um kurzlebige Zwischenprodukte oder schnelle Strukturveränderungen zu analysieren.
Abb.: Im „Kristall“ aus fluoreszierenden Ionen (oben) bleibt der mit dem Molekül besetzte Gitterplatz (weißer Kreis) dunkel. Die Zerfallswahrscheinlichkeit ist deutlich mit einer Periode 30 Femtosekunden moduliert (unten; Bild: MPQ)
Die neue Generation von Röntgen-Femtosekunden-Lasern verspricht, diese Hürden zu überwinden. Denn sie liefert Lichtpulse, die mit einer Dauer von wenigen Femtosekunden kurz genug sind, um die Moleküle durch Photonenstreuung abzubilden, bevor Strahlenschäden auftreten. Außerdem lässt sich der Strahldurchmesser auf die Größe eines Moleküls, etwa ein Zehntel Mikrometer, fokussieren. Doch wie schafft man es, ein Molekül so genau zu positionieren, dass man den Laserpuls dann zielgenau überlagern kann?
Die Garchinger Physiker haben nun ein einzelnes Molekül in einen bereits vorhandenen Ionenkristall eingebettet. In ihrem Experiment schalten sie dazu zwei Ionenfallen hintereinander. In der ersten Falle werden unter Einstrahlung von Licht aus Magnesiumdampf und Wasserstoff in einer photochemischen Reaktion MgH+-Molekülionen erzeugt. Diese zweiatomigen Moleküle gelangen in eine zweite Ionenfalle, in der sich bereits atomare Magnesiumionen in einem gegenseitigen Abstand von 10 Mikrometern zu einem Gitter angeordnet haben. Unter dem Einfluss der kalten Atome kommt auch das einzelne Molekülion nahezu zum Stillstand und ersetzt eines der atomaren Ionen im Kristallgitter. Während sich jedoch die atomaren Ionen durch Fluoreszenzlicht zu erkennen geben, bleibt der Gitterplatz mit dem Molekül dunkel. Die Position des Moleküls lässt sich jetzt durch Interpolation aus der Position seiner beiden leuchtenden Nachbarn auf weniger als ein Mikrometer genau ableiten.
Damit sind die Voraussetzungen dafür geschaffen, das Teilchen zielgenau und mit nahezu hundertprozentiger Wahrscheinlichkeit mit Femtosekunden-Laserpulsen zu treffen. Dabei wird das Molekül, das sich zunächst im Vibrationsgrundzustand befindet, mit einem ersten Puls in einen Zustand angeregt, bei dem die beiden Atome mit einer Periode von 30 Femtosekunden gegeneinander schwingen. Ein zweiter Puls testet wenig später, in welcher Phase des Schwingungszyklus sich das Molekül gerade befindet. Am Umkehrpunkt, also nach 15 Femtosekunden, ist der Abstand zwischen den beiden Atomen am größten. Trifft der Abfrage-Puls genau zu diesem Zeitpunkt auf das Molekül, dann ist die Wahrscheinlichkeit dafür, dass die Bindung zwischen den zwei Atomen zerbricht, am größten. Infolgedessen verschwindet der dunkle Fleck im Ionenkristall.
„In unserem Experiment könnten wir die Moleküle im Takt der Laserpulse zur Verfügung stellen, d.h. rund 100 in der Sekunde“, erklärt Tobias Schätz. „Auf diese Weise kommt immer Nachschub für das bereits bestrahlte und letztendlich zerstörte Molekül. Indem wir bei den verschiedenen Molekülen die Verzögerungszeiten zwischen Anrege- und Abfrage-Puls variieren, können wir die Schwingungsdynamik des zweiatomigen Moleküls auflösen. Dies ist nur möglich, weil die Pulse mit einer Dauer von wenigen Femtosekunden wesentlich kürzer als die Schwingung des Moleküls sind.“
MPQ / OD