Mit Nanopropellern ins Auge
Propellerförmige Nanoroboter sollen Arzneien im Körper zielgenau transportieren.
Wissenschaftler am Max-Planck-Institut für Intelligente Systeme in Stuttgart haben propellerförmige Nanoroboter entwickelt, die erstmals in der Lage sind, dichtes Gewebe wie es im Auge vorkommt zu durchbohren. Sie trugen eine Antihaftbeschichtung auf die 500 Nanometer breiten Propeller auf, die so klein sind, dass sie durch die enge molekulare Matrix der gelartigen Substanz im Glaskörper des Auges durchschlüpfen können. Ihre schraubenartige Struktur, Größe und schlüpfrige Beschichtung ermöglichen es den Nanopropellern, sich relativ ungehindert durch ein Auge zu bewegen, ohne dabei das empfindliche Gewebe um sie herum zu beschädigen. Bisher war dies nur in Modellsystemen oder biologischen Flüssigkeiten möglich. Die Forscher sind damit dem Ziel einige Schritte nähergekommen, Nanoroboter eines Tages als Transportmittel zu nutzen, die Medikamente oder andere Therapeutika genau dorthin bringen können, wo sie gebraucht werden, ohne, dass ein größerer operativer Eingriff nötig wäre.
Abb.: Diese Nanopropeller lassen sich von außen dank der Einlagerung von Eisen-Partikeln magnetisch steuern. (Bild: MPIIS)
Einen Nanoroboter durch dichtes Gewebe zu steuern, ist eine große Herausforderung. Zunächst wäre da die zähflüssige Konsistenz des Augapfelinneren, die enge molekulare Matrix, durch die die Nanopropeller hindurchschlüpfen können sollen. Sie wirkt wie eine Barriere und verhindert das Eindringen größerer Partikel und Strukturen. Außerdem sorgen die chemischen Eigenschaften der Molekülmatrix dafür, dass sämtliche Partikel stecken bleiben, da es wie ein klebriges Geflecht wirkt. Deswegen haben die Forscher eine ganz besondere, zweilagige Antihaftbeschichtung eingesetzt. Die erste Schicht besteht aus Molekülen, die an die Oberfläche andocken, während die zweite eine flüssige Beschichtung ist, die die Haftung zwischen den Nanorobotern und dem umliegenden Gewebe verringert.
„Bei der Beschichtung haben wir uns von der Natur inspirieren lassen", erklärt Zhiguang Wu. „Wir trugen eine flüssige Schicht auf die Nanopropeller auf, wie sie bei der fleischfressenden Kannenpflanze (Nepenthes) vorkommt. Auf ihren Blättern, die als Fallgruben dienen, sorgt eine rutschige omniphobe Beschichtung dafür, dass Insekten ausrutschen und hineinfallen. So schlüpfrig wie die Teflonbeschichtung einer Bratpfanne. Ohne diese Schicht könnten wir den Roboter nicht durchs Auge steuern. Sie sorgt dafür, dass die Haftung zwischen dem Netz aus Molekülen im Glaskörper des Auges und der Oberfläche unserer Nanoroboter möglichst klein bleibt." Nun musste der Nanoroboter noch von außen gesteuert werden. Der Antrieb funktioniert magnetisch. Bei der Herstellung der Nanopropeller bauen die Forscher Eisen ein, was es ihnen ermöglicht, die Nanoroboter von außen mit Hilfe von Magnetfeldern zum gewünschten Ziel zu steuern.
„Der magnetische Antrieb der Nanoroboter, ihre ausreichend kleine Größe sowie die rutschige Beschichtung sind nicht nur im Auge, sondern können auch für die Penetration anderer Gewebe im menschlichen Körper nützlich sein", sagt Tian Qiu. In der Augenklinik in Tübingen testeten die Forscher ihre Nanopropeller an einem sezierten Schweineauge. Sie beobachteten die Fortbewegung der Propeller mit Hilfe der optischen Kohärenztomographie, die in der Diagnostik von Augenerkrankungen weit verbreitet ist. Mit einer kleinen Nadel injizierten die Forscher Zehntausende ihrer schraubenförmigen Roboter in den Glaskörper des Auges. Mit Hilfe umliegender Magnetspulen, die die Nanopropeller drehen und damit nach vorne bewegen, schwammen die kleinen Propeller dann zielgerichtet zur Netzhaut, wo der Schwarm landete.
Die Forscher konnten den Schwarm in Echtzeit präzise in Richtung der Retina steuern. Nun arbeiten das Team daran, die Nanofahrzeuge eines Tages als Transportmittel für Medikamente einzusetzen. „Das ist unsere Vision", sagt Tian Qiu. „Wir wollen unsere Nanopropeller als Werkzeuge für die minimal-invasive Behandlung von Krankheiten aller Art einsetzen können, bei denen der Problembereich schwer zugänglich und von dichtem Gewebe umgeben ist. Nicht allzu weit in der Zukunft werden wir sie mit Medikamenten beladen können."
Seit mehreren Jahren fertigen die Forscher verschiedene Ausführungen mit Hilfe eines 3D-Nanofabrikationsprozesses an, den die Forschungsgruppe „Mikro-, Nano- und Molekulare Systeme“ unter der Leitung von Peer Fischer entwickelt hat. Milliarden von Nanorobotern können in nur wenigen Stunden hergestellt werden, indem Siliziumdioxid und andere Materialien, einschließlich Eisen, unter hohem Vakuum auf einen Siliziumwafer verdampfen und sich dieser dabei dreht. So entsteht die Helix-Struktur.
MPIIS / JOL