Mit Quanteninformation ist künftig zu rechnen
Eingesperrtes Atom bildet essentielles Logikelement für einen Quantencomputer.
Physiker des Max-Planck-Instituts für Quantenoptik in Garching haben ein neuartiges Quantengatter, ein elementares Bauelement eines Quantencomputers, entwickelt. Ein solcher Rechner könnte manche Aufgaben in Zukunft wesentlich schneller bewältigen als klassische Computer. Als zentrales Element ihres Quantengatters verwenden die Physiker ein Atom, das zwischen zwei Spiegeln eines Resonators gefangen ist. Damit schalten sie den Zustand eines Photons, das am Resonator mit dem Atom reflektiert wird. Darüber hinaus kann diese Rechenoperation das Atom mit dem Photon verschränken. Im verschränkten Zustand hängen die Eigenschaften verschiedener Quantenteilchen voneinander ab. Verschränkung erlaubt völlig neue Konzepte in der Informationsverarbeitung. Das Quantengatter, das die Garchinger Physiker nun vorstellen, ermöglicht es zudem, Quantennetzwerke zu konstruieren. In solchen Netzen könnte Information zwischen mehreren Quantenrechnern in Form von Photonen übertragen werden.
Abb.: In der Edelstahlhalterung sind zwei Glasspiegel in Form von Kegelstümpfen montiert. Diese nutzen die Physiker, um ein Quantengatter, eine logische Verknüpfung eines Photons mit dem Atom im Resonator, zu realisieren. (Bild: S. Ritter / MPQ)
Das Forscherteam um Gerhard Rempe lotet mit seinen Experimenten die Möglichkeiten aus, Daten in Form von Quantenbits, kurz Qubits, zu verarbeiten. Während klassische Bits nur als „0“ oder „1“ existieren, können sich die beiden Einstellungen in Qubits überlagern. Vor allem durch die Verschränkung mehrerer Qubits werden „parallele" Rechnungen möglich, die mit klassischen Computern undenkbar sind. „Wir stellen mit einem universellen Quantengatter nun ein essentielles Bauelement eines Quantencomputers“ sagt Stephan Ritter, Leiter des Experiments.
Das Logikgatter der Garchinger Physiker könnte sowohl für den Quantenrechner als auch für die Übertragung von Quanteninformation interessant sein, weil es Mittel beider Techniken nutzt. Die bisherigen Konzepte für einen Quantencomputer setzen auf denkbar winzige, aber immerhin solide Teichen wie etwa Atome oder Ionen. Inzwischen haben Physiker auch auf verschiedene Weisen Quantengatter erzeugt. Sehr erfolgreich gelang ihnen dies bisher mit Ionen, an denen österreichische Forscher schon 100 logische Operationen hintereinander vorgenommen haben. Die Quantenkommunikation, die auch der Quantenkryptografie zugrunde liegt, nutzt dagegen Photonen als mobiles Medium.
„Mit unserem Quantengatter haben wir ein hybrides System aus einem Photon und einem Atom im Resonator geschaffen“, sagt Andreas Reiserer, der das aktuelle Experiment im Rahmen seiner Doktorarbeit vornahm. „So könnten wir mehrere Quantenprozessoren miteinander vernetzen.“ Auf diese Weise ließe sich das Problem umgehen, dass sich möglicherweise nicht genügend Quantengatter zu einem Prozessor zusammenschließen lassen, damit der Quantenrechner seine Qualitäten ausspielen kann. In einem Quantennetzwerk mit hybriden Quantengattern als Schnittstellen würde dann nicht ein großer Quantencomputer besonders knifflige Aufgaben bearbeiten, sondern mehrere kleinere, die untereinander mit Photonen kommunizieren.
Abb.: Das Atom (blau) im Resonator, der aus zwei Spiegeln besteht, und ein eingestrahltes Photon (rot) codieren jeweils ein Quantenbit. (Bild: F. Höffeler / MPG)
Stephan Ritter betont noch eine weitere Eigenschaft, die das Quantengatter des Teams auszeichnet. „Wir stellen einen neuen Wechselwirkungsmechanismus vor, mit dem sich logische Verknüpfungen von Qubits vornehmen lassen“, sagt der Forscher. „Davon gibt es bisher nicht viele, und neue sind auch nur schwer zu identifizieren.“ Die Forscher können gezielt die Polarisation eines Photons ändern, indem sie es mit einem Rubidiumatom im Resonator interagieren lassen. Wird das Photon am Resonator mit dem Atom reflektiert, dreht diese Interaktion die Schwingungsebene – wenn sich das Atom in einem entsprechenden Zustand befindet.
Schon seit einigen Jahren können die Garchinger Forscher einzelne Atome für viele Sekunden, unter idealen Bedingungen sogar länger als eine Minute, zwischen den Spiegeln des Resonators fangen. Dabei helfen ihnen Laserstrahlen, die fein auf das System aus Resonator und Atom abgestimmt sind und das Teilchen mit der Kraft ihres elektromagnetischen Feldes zwischen den Spiegeln festsetzen. Mit weiteren Laserpulsen manipulieren die Physiker den Spin des Rubidiumatoms. „Je nach der Richtung des Spins, ändert sich die Polarisation des Photons, das auf den Resonator mit dem Atom trifft“, erklärt Andreas Reiserer. Abhängig vom Zustand des Atoms, wird also das Qubit des photonischen Eingangssignals von „0“ auf „1“ oder umgekehrt geschaltet.
Abb.: Mit einer Infrarotkamera lichten die Physiker ein fluoreszierendes Atom zwischen den Spiegeln des Resonators ab (helle Pixel im weiß umrandeten Teilbild). (Bild: A. Reiserer / MPQ)
Bei geeigneten Eingangszuständen unterwirft der Schaltvorgang das Atom und das Photon zudem der Verschränkung. Die Garchinger Physiker können ein Atom aber nicht nur mit einem einzigen Photon verschränken, indem sie den Spin des Atoms und die Polarisation des Photons geschickt wählen. Sie können gleich mehrere Photonen in die geisterhafte Abhängigkeit von dem Atom bringen. Und das hat unweigerlich zur Folge, dass alle Photonen und das Atom miteinander verschränkt sind. In seiner aktuellen Arbeit hat das Garchinger Team dies mit zwei Photonen durchexerziert. In weiteren Experimenten haben sie das Atom aus der verschränkten Ménage-à-trois herausgenommen, sodass nur noch ein Paar verschränkte Photonen übrig bleibt. Das Atom im Resonator steht so wieder für neue Aufgaben zur Verfügung.
„Mit der aktuellen Arbeit haben wir einen Höhepunkt in unserer Forschung der vergangenen Jahre erreicht“, sagt Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik. „Wir haben Information zunächst in einzelnen Atomen gespeichert und wieder ausgelesen. Dann haben wir Qubits von einem Atom zum nächsten verschickt, jetzt haben wir mit unserem System Quanteninformation auch erstmals verarbeitet.“ Von hier bis zu einem Quantennetzwerk mehrerer Quantencomputer ist es zwar noch ein weiter Weg, doch die Garchinger Physiker schaffen dafür die Basis, indem sie ihren Einfluss in der Quantenwelt immer mehr ausweiten. „Wir können inzwischen viele Effekte kontrollieren, die künftig auch in der Quanteninformationstechnologie Anwendung finden könnten“, so Rempe.
PH/MPG / PH