31.10.2007

Nano-Architektur mit einzelnen Molekülen

Erstmals gelang es, molekulare Bausteine auf atomarer Ebene so miteinander chemisch zu verbinden, dass präzise und stabile Strukturen mit definierter Architektur entstehen.



Erstmals gelang es, molekulare Bausteine auf atomarer Ebene so miteinander chemisch zu verbinden, dass präzise und stabile Strukturen mit definierter Architektur entstehen.

Einer Forschergruppe an der Freien Universität Berlin um den Experimentalphysiker Leonhard Grill ist es in Zusammenarbeit mit Chemikern der Humboldt-Universität Berlin und theoretischen Physikern der University of Liverpool erstmals gelungen, molekulare Bausteine auf atomarer Ebene präzise miteinander zu verbinden. Die Wissenschaftler verknüpften Module der Größe von einem Nanometer chemisch so miteinander, als wären es Lego-Bausteine. Die Ergebnisse wurden jetzt in der Zeitschrift „Nature Nanotechnology“ veröffentlicht.

Die faszinierende Vision der Nanotechnologie besteht in der kontrollierten Anordnung von Materie auf der Nanometer-Skala. Eine zentrale Idee besteht darin, stabile Strukturen aus einzelnen molekularen Bausteinen in einer vorgegebenen Architektur auf atomarer Ebene zu bauen, etwa zu Schaltkreisen, Sensoren und Nanomaschinen. Wirtschaftlich bedeutsam sind solche Gebilde wegen deren geringer Größe. Bisher konnten jedoch keine Moleküle auf einer Oberfläche in solchen Netzwerken vorgegebener Struktur chemisch verknüpft werden.

Um solche Nanostrukturen aufzubauen, werden Moleküle mit einer gewünschten Zahl symmetrisch angeordneter Seitengruppen („Beine“) auf eine Oberfläche aufgebracht. Durch geschicktes Erwärmen lassen sich einzelne Atome von den Seitengruppen kontrolliert abspalten, sodass Beine „aktiviert“ werden, das heißt chemisch reaktive Stellen am Molekül entstehen. Anschließend verknüpfen sich die Moleküle auf der Oberfläche zu geordneten Strukturen mit definierter Form, wobei sich eine hohe Selektivität daraus ergibt, dass sie ausschließlich dann eine kovalente Bindung bilden wenn zwei „aktivierte“ Beine aufeinandertreffen. Durch gezieltes Design verschiedener molekularer Bausteine konnten die Forscher zeigen, wie sich die Form der erzeugten Strukturen exakt einstellen lässt.

Obwohl die Ergebnisse dieser interdisziplinären Arbeit der Grundlagenforschung zuzuordnen sind, könnten diese von großem Interesse für künftige Anwendungen sein, da die atomare Größenordnung einen enormen Fortschritt in der Miniaturisierung darstellt. Aus den geringen Abmessungen der molekularen Bausteine ergibt sich eine Dichte von mehr als 10 13/cm 2 in einem solchen Netzwerk – das ist mehr als 10.000mal höher als die Dichte von Transistoren in integrierten Schaltkreisen oder Computerchips. In Anwendungen könnten die einzelnen Moleküle in Zukunft mit Funktionen ausgestattet werden, um zum Beispiel als elektronische Schaltkreise oder Sensoren auf atomarer Skala zu arbeiten.

Quelle Freie Universität Berlin

Weitere Infos:

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen