Nanodiamanten als effiziente Katalysatoren
Wasserstoff an den Oberflächen erleichtert die Emission von Elektronen.
Um chemische Reaktionen in einem wässrigen Medium katalytisch zu beschleunigen, kommt es darauf an, zunächst Elektronen aus einem Katalysator herauszulösen. Das kann mit Licht gelingen. Seit einigen Jahren stehen daher Nanodiamant-Materialien im Fokus der Forschung: Es sind preiswerte Nanopartikel aus Kohlenstoff, deren Oberflächen im Vergleich zum Volumen sehr groß sind. Bei reinen Kohlenstoff-Nanodiamant-Materialien wird jedoch energiereiches UV-Licht für die Anregung benötigt. Weil sie so extrem winzig sind, können sich an den Oberflächen unter Umständen jedoch molekulare Zustände etablieren, die auch sichtbares Licht absorbieren.
Ein Team am Helmholtz Zentrum Berlin HZB hat nun im Rahmen des DIACAT-Projekts unterschiedliche Varianten von Nanodiamant-Materialien während der Anregung mit Licht untersucht und die Prozesse dabei mit extrem hoher Zeitauflösung analysiert. Nanodiamant-Materialien mit unterschiedlicher Oberflächenterminierung stellte das Team um Jean-Charles Arnault, CEA, Frankreich, und die Gruppe um Anke Krueger, Universität Stuttgart, her. Dabei unterschieden sich die Nanopartikel durch ihre Oberflächen, die mal mehr, mal weniger zusätzliche Wasserstoffatome enthielten. „Der Wasserstoff an den Oberflächen erleichtert die Emission von Elektronen erheblich“, erklärt Tristan Petit vom HZB. „Dabei ist eine bestimmte Kombination aus Wasserstoff sowie Fulleren-artigen Teilchen an den Oberflächen der Nanopartikel ideal“, sagt er.
„Wir haben die wässrigen Nanodiamantdispersionen mit verschiedenen Oberflächenabschlüssen wie Wasserstoff, -OH oder -COOH untersucht und mit verschiedenen Wellenlängen angeregt“, sagt Christoph Merschjann. Mit Hilfe von ultraschnellen Laserpulsen konnten sie genau vermessen, wie sich das Absorptionsprofil bei verschiedenen Anregungswellenlängen im UV-Bereich bei 225 Nanometer und mit blauem Licht im sichtbaren Bereich bei 400 Nanometer verhält. „Wir wollten herausfinden, was in den entscheidenden Pikosekunden nach Anregung mit Licht passiert, denn das ist die Zeit, in der ein Elektron die Oberfläche verlässt und ins Wasser geht“, sagt Merschjann.
Das Theorieteam um Annika Bande steuerte Modellierungen mit Dichtefunktionaltheorie bei, um die Spektren zu interpretieren. Die Messdaten zeigten, wie erwartet, dass UV-Licht in allen Proben Elektronen in Lösung bringt, aber bei jenen Proben, die Fulleren-artigen Kohlenstoff an ihren Oberflächen hatten, gelang dies auch mit sichtbarem Licht. „In dieser Arbeit zeigen wir – nach unserem besten Wissen zum ersten Mal – dass die Emission von gelösten Elektronen aus Nanodiamanten in Wasser mit sichtbarem Licht möglich ist“, fasst Petit die Ergebnisse zusammen. Damit ist ein entscheidender Schritt geschafft, um Nanodiamant-Materialien als Photokatalysatoren zu erschließen. Diese preiswerten und metallfreien Materialien könnten ein Schlüssel sein, um künftig mit Sonnenlicht CO2 zu wertvollen Kohlenwasserstoffen weiter zu verarbeiten oder auch N2 zu Ammoniak zu machen.
HZB / JOL