10.06.2011

Neue Triebkraft chemischer Reaktionen entdeckt

Tunnelprozess lenkt chemische Reaktionen weg von dem durch die kinetische Kontrolle erwarteten Produkt.

Eine neue Triebkraft chemischer Reaktionen haben Wissenschaftler um Peter R. Schreiner vom Institut für Organische Chemie der Justus-Liebig-Universität Gießen gemeinsam mit Kollegen um Wesley D. Allen von der University of Georgia (Athens, USA) entdeckt: Sie konnten zeigen, dass die sogenannte Tunnelkontrolle chemische Reaktionen in eine Richtung lenken kann, die weder durch das etablierte Prinzip der kinetischen Kontrolle (in Richtung der Reaktion mit der geringsten Barriere) noch durch das der thermodynamischen Kontrolle (in Richtung der energetisch günstigsten Reaktion) vorhergesagt worden wären.

Die Entdeckung der Forscher basiert auf der Darstellung eines bisher unbekannten, kleinen Moleküls, dem Methylhydroxycarben (H3C–C–OH). Dieses Molekül wurde nach thermischer Erzeugung in einer Argonmatrix bei minus 263 Grad Celsius „gefangen“ und spektroskopisch nachgewiesen. Das erhoffte Tunnelverhalten trat ein: Die stärkste Bindung im System, nämlich die zwischen Sauerstoff (O) und Wasserstoff (H) wurde gebrochen. Innerhalb weniger Stunden bildete sich selbst bei dieser tiefen Temperatur ausschließlich das unwahrscheinlichste Produkt, nämlich Acetaldehyd (H3C–CHO). Es war also ein Wasserstoff-Atom vom Sauerstoff zum Kohlenstoff (C) gewandert. Da bei Temperaturen nahe dem absoluten Nullpunkt mangels Energie keine thermischen Reaktionen stattfinden können, konnte es sich nur um einen quantenmechanischen Tunnelprozess handeln.

Bisher war lediglich bekannt, dass durch das Tunneln die Reaktionsgeschwindigkeit deutlich größer werden kann, was bei niedrigen Temperaturen und leichten Atomen besonders zum Tragen kommt. „Was wir hier entdeckt haben, geht allerdings weit darüber hinaus“, so Schreiner. „Der Tunnelprozess lenkt die Reaktion weg von dem durch die kinetische Kontrolle erwarteten Produkt – es bildet sich gerade eben nicht das Produkt mit der geringsten Barriere.” Diese Ergebnisse könnten starken Einfluss darauf haben, wie Wissenschaftler chemische Umsetzungen verstehen und entwerfen – sei es in der Chemie, den Materialwissenschaften oder der Biochemie.

Universität Gießen / MH
 

Weitere Infos

Anbieter des Monats

Dr. Eberl MBE-Komponenten GmbH

Dr. Eberl MBE-Komponenten GmbH

Das Unternehmen wurde 1989 von Dr. Karl Eberl als Spin-off des Walter-Schottky-Instituts der Technischen Universität München gegründet und hat seinen Sitz in Weil der Stadt bei Stuttgart.

Content-Ad

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Das Park FX200 ist ideal für Forschung und Industrie zur automatisierten Messung von bis zu 200mm großen Proben und bietet bedeutende Fortschritte in der AFM-Technologie

Meist gelesen

Themen