23.04.2014

Neutronen-Suche nach Dunkler Energie

Gravitations-Resonanz-Methode schränkt Bereiche für hypothetische Teilchen sehr viel stärker ein als bisher.

Alle Teilchen, die wir heute kennen, machen nur fünf Prozent der Masse und Energie im Universum aus. Der große Rest – die „Dunkle Energie“ und die „Dunkle Materie“ – bleibt bis heute mysteriös. Ein Team der TU Wien hat nun gemeinsam mit dem Institut Laue-Langevin (ILL) in Grenoble hochsensitive Untersuchungen von Gravitations-Effekten auf winzigen Abständen durchgeführt. Damit lässt sich nun der Bereich, in dem man neue Teilchensorten oder zusätzliche Naturkräfte vermuten könnte, hunderttausend mal stärker einschränken als bisher.

 Abb.: Neutronen zwischen parallelen Platten geben Aufschluss über mögliche Kräfte im Universum. (Bild: TU Wien)


Die Dunkle Materie kann man zwar nicht sehen, sie wirkt aber durch ihre Gravitationskraft auf die bekannte Materie ein, etwa auf die Rotation von Galaxien. Die dunkle Energie hingegen ist dafür verantwortlich, dass sich das Universum immer schneller ausdehnt.

Dunkle Energie kann man mit einer zusätzlichen physikalischen Größe beschreiben, mit Albert Einsteins Kosmologischer Konstante. Eine Alternative dazu sind sogenannte Quintessenz-Theorien: „Vielleicht ist der leere Raum gar nicht leer, sondern erfüllt von einem bisher unbekannten Feld, vergleichbar mit dem Higgs-Feld“, sagt Hartmut Abele vom Atominstitut der TU Wien. Benannt wurden diese Theorien nach der von Aristoteles postulierten Quintessenz, einem hypothetischen fünften Element neben den vier antiken Urstoffen. Andersartige Teilchensorten und zusätzliche Naturkräfte müssten sich allerdings auch in Experimenten auf der Erde nachweisen lassen.

Tobias Jenke und Hartmut Abele von der TU Wien entwickelten ein extrem sensitives Instrument, mit dem an der Neutronenquelle des ILL in Grenoble die Gravitationskraft vermessen werden konnte. Neutronen sind dafür optimal geeignet: Sie sind elektrisch neutral und kaum polarisierbar. Auf sie kann im Experiment bloß die Gravitation wirken – und allenfalls auch neue, bisher unbekannte Zusatzkräfte.

Die Neutronen werden abgekühlt und zwischen zwei parallelen Platten hindurchgeschickt. Nach den Gesetzen der Quantenphysik kann sich das Neutron dabei nur in ganz bestimmten Zuständen mit ganz bestimmten Energien befinden, die von der Stärke der Kraft abhängt, die von der Gravitation auf das Teilchen ausgeübt wird. Indem man die untere Platte vibrieren lässt, kann man die Neutronen zwischen den Zuständen hin und her wechseln lassen. So lassen sich die Abstände der Energieniveaus vermessen.

Abb.: Das Gravitations-Resonanz-Spektrometer. (Bild: TU Wien)

„Das Experiment ist ein wichtiger Schritt zur Modellierung gravitativer Wechselwirkungen bei sehr kleinen Distanzen. Die Neutronen am ILL und die Messinstrumente aus Wien bilden zusammen das beste Werkzeug, um nach winzigen Abweichungen von der Newton‘schen Gravitationstheorie zu suchen, die von manchen Theorien vorhergesagt werden“, sagt Peter Geltenbort vom ILL.

Wie leicht eine solche Abweichung aufzufinden ist, hängt von verschiedenen Parametern ab – zum Beispiel von der Stärke der Kopplung eines hypothetischen neuartigen Feldes an die bekannte Materie. Bestimmte Wertebereiche für diese Parameter gelten längst als ausgeschlossen: Gäbe es eine „Quintessenz“ mit solchen Kopplungsstärken, hätte man sie bereits in anderen Präzisions-Experimenten finden müssen. Doch noch immer blieb ein großer „erlaubter“ Parameterbereich, in dem sich neue physikalische Phänomene verstecken könnten.

Mit der Neutronen-Methode lassen sich nun allerdings Theorien in diesem Bereich testen: „Bisher konnten wir bei unseren Messungen keine Abweichungen zum bekannten Newton’schen Gravitationsgesetz finden“, sagt Hartmut Abele. „Dadurch können wir nun einen weiten Bereich von Parametern ausschließen.“ Die Messergebnisse legen nun ein Limit für den Kopplungsparameter fest, das hunderttausendmal unterhalb der Grenzen liegt, die sich aus anderen Messmethoden ergaben.

Auch wenn sich auf diese Weise bestimmte hypothetische Teilchen ausschließen lassen ist es freilich noch immer möglich, dass sich unterhalb dieser verbesserten Nachweisgrenze neuartige Physik versteckt. Die Gravitations-Resonanz-Methode soll daher nun noch weiterentwickelt werden. Einige Größenordnungen an Genauigkeits-Verbesserung scheinen noch möglich. Wenn sich auch dann keine Hinweise auf Abweichungen von den bekannten Kräften ergeben, könnte Albert Einstein schließlich doch noch Recht behalten: Seine Kosmologische Konstante erscheint dann immer plausibler.

TU Wien / PH

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen