Neutronensterne im Engtanz
Neues Modell liefert realistische Daten für Abstrahlung von Gravitationswellen bei Neutronensternen.
Wissenschaftler vom Max-Planck-
Abb.: Gezeitenkräfte deformieren einen Neutronenstern (links), der ein anderes kompaktes Objekt – einen zweiten Neutronenstern oder ein schwarzes Loch – umkreist. (Bild: T. Hinderer, AEI)
Mit dem ersten Nachweis von Gravitationswellen verschmelzender schwarzer Löcher, die im Februar dieses Jahres bekannt gegeben wurde, begann die Ära der Gravitationswellenastronomie – eine einzigartige Methode zur Erforschung der gewaltigsten astrophysikalischen Prozesse. Eine viel versprechende Quelle von Gravitationswellen sind kollidierende Neutronensterne. Sie gehören zu den exotischsten Objekten im Universum: Bei einem Durchmesser von weniger als 20 Kilometern kann ihre Masse bis zum Doppelten der Sonne betragen. Der Zustand solch extrem dichter Materie ist schon seit Jahrzehnten ein ungelöstes Rätsel. Könnten wir in das Innere von Neutronensternen schauen, so könnten wir die rätselhafte Physik dieser extremen Himmelskörper verstehen.
Gravitationswellen-
Das „Effective One Body-
Die neue Arbeit erweitert das Effective One Body-
Dieser Effekt erinnert an die Meeresgezeiten auf der Erde, hier verursacht durch die Anziehung des Mondes. In ähnlicher Weise verformt sich der Neutronenstern als Reaktion auf seinen Begleiter. In mehreren früheren Studien wurde dieser Effekt untersucht. Die vorliegende Arbeit verbessert die Modellierung der Gezeiteneffekte deutlich, denn nun werden auch innere Schwingungen des Neutronensterns berücksichtigt. Diese entstehen, wenn die Gezeitenkraft des Begleiters sich mit einer Frequenz ändert, die der Eigenfrequenz des Neutronensterns nahekommt.
Die Eigenfrequenz von Neutronensternen liegt im Kilohertz-
„Unser detailliertes Modell zeigt, wie die Wellenformen genau aussehen und wonach wir in den Daten suchen müssen“, sagt Andrea Taracchini, Koautor der Studie und Wissenschaftler in der Abteilung Astrophysikalische und Kosmologische Relativitätstheorie am AEI. „Wir haben unser Modell mit Ergebnissen numerischer Simulationen von unseren Kooperationspartnern aus den USA und Japan verglichen. Es stimmt besser mit den numerischen Resultaten überein als Modelle, die die Eigenfrequenz nicht berücksichtigen.“ „Das bedeutet, dass unser Modell echte physikalische Effekte abbildet,“ sagt Tanja Hinderer, Hauptautorin der Veröffentlichung. Sie ist Wissenschaftlerin an der University of Maryland und derzeit langfristig zu Besuch am AEI. „Zwar bieten numerische Simulationen die realistischsten Vorhersagen für die Gravitationswellen, sie sind aber zu aufwändig, um genügend Wellenformen für die Detektoren zu liefern. Das nun entwickelte analytische Modell kann nicht nur sehr viel mehr Wellenformen generieren, sondern auch bestimmte Charakteristika der Wellen physikalisch erklären.“
Die Suche und Analyse von Gravitationswellen erfordert detaillierte Kenntnisse über eine enorme Anzahl unterschiedlicher Wellenformen. Es müssen sehr viele verschiedene Parameterkombinationen – unterschiedliche Zusammensetzungen des Doppelsternsystems, verschiedene Massenverhältnisse, Eigendrehimpulse und dynamische Verformungen der Neutronensterne – berechnet werden. Mit dem entwickelten analytischen Modell können viele tausend Wellenformen innerhalb kurzer Zeit berechnet werden; mit diesen Schablonen werden dann die Daten der Gravitationswellendetektoren wissenschaftlich ausgewertet.
AEI / DE